Aromatic molecules play an important role in the chemistry of astronomical environments such as the cold interstellar medium (ISM) and (exo)planetary atmospheres. The observed abundances of (polycyclic) aromatic hydrocarbons such as benzonitrile and cyanonaphthalenes are, however, highly underestimated by astrochemical models. This demonstrates the need for more experimentally verified reaction pathways.
View Article and Find Full Text PDFSulfur is one of six life-essential elements, but its path from interstellar clouds to planets and their atmospheres is not well known. Astronomical observations in dense clouds have so far been able to trace only 1 percent of cosmic sulfur, in the form of gas phase molecules and volatile ices, with the missing sulfur expected to be locked in a currently unidentified form. The high sulfur abundances inferred in icy and rocky solar system bodies indicate that an efficient pathway must exist from volatile atomic sulfur in the diffuse interstellar medium to some form of refractory sulfur.
View Article and Find Full Text PDFPhys Chem Chem Phys
April 2024
The identification of species in the interstellar medium requires precise and molecule-specific spectroscopic information in the laboratory framework, in broad spectral ranges and under conditions relevant to interstellar environments. In this work, we measure the gas-phase infrared spectra of neutral carbon clusters, C ( = 6-11), in a molecular beam. The C distribution is formed by photofragmentation of C molecules, concurrently showing a top-down formation mechanism.
View Article and Find Full Text PDFIn various astronomical environments such as the interstellar medium or (exo)planetary atmospheres, an interplay of bottom-up growth and top-down destruction processes of (polycyclic) aromatic hydrocarbons (PAHs) takes place. To get more insight into the interplay of both processes, we disentangle the fragmentation and formation processes that take place upon dissociative ionization of benzonitrile. We build on previous spectroscopic detections of the ionic fragmentation products of benzonitrile and use these as reactants for low-temperature bottom-up ion-molecule reactions with acetylene.
View Article and Find Full Text PDFInfrared messenger-tagging predissociation action spectroscopy (IRPD) is a well-established technique to record vibrational spectra of reactive molecular ions. One of its major drawbacks is that the spectrum of the messenger-ion complex is taken instead of that of the bare ion. In particular for small open-shell species, such as the Renner-Teller (RT) affected HCCH and DCCD, the attachment of the tag may have a significant impact on the spectral features.
View Article and Find Full Text PDFThe interaction of water and polycyclic aromatic hydrocarbons is of fundamental importance in areas as diverse as materials science and atmospheric and interstellar chemistry. The interplay between hydrogen bonding and dipole-π interactions results in subtle dynamics that are challenging to describe from first principles. Here, we employ far-IR action vibrational spectroscopy with the infrared free-electron laser FELIX to investigate naphthalene with one to three water molecules.
View Article and Find Full Text PDFThe cationic fragmentation products in the dissociative ionization of pyridine and benzonitrile have been studied by infrared action spectroscopy in a cryogenic ion trap instrument at the Free-Electron Lasers for Infrared eXperiments (FELIX) Laboratory. A comparison of the experimental vibrational fingerprints of the dominant cationic fragments with those from quantum chemical calculations revealed a diversity of molecular fragment structures. The loss of HCN/HNC is shown to be the major fragmentation channel for both pyridine and benzonitrile.
View Article and Find Full Text PDFThe infrared excitation and photodesorption of carbon monoxide (CO) and water-containing ices have been investigated using the FEL-2 free-electron laser light source at the FELIX laboratory, Radboud University, The Netherlands. CO-water mixed ices grown on a gold-coated copper substrate at 18 K were investigated. No CO photodesorption was observed, within our detection limits, following irradiation with light resonant with the C-O vibration (4.
View Article and Find Full Text PDFThe linear radical cation of cyanoacetylene, HCN (Π), is not only of astrophysical interest, being the, so far undetected, cationic counterpart of the abundant cyanoaceteylene, but also of fundamental spectroscopic interest due to its strong spin-orbit and Renner-Teller interactions. Here, we present the first broadband vibrational action spectroscopic investigation of this ion through the infrared pre-dissociation (IRPD) method using a Ne tag. Experiments have been performed using the FELion cryogenic ion-trap instrument in combination with the FELIX free-electron lasers and a Laservision optical parametric oscillator/optical parametric amplifier system.
View Article and Find Full Text PDFInterstellar and cometary ices play an important role in the formation of planetary systems around young stars. Their main constituent is amorphous solid water (ASW). Although ASW is widely studied, vibrational energy dissipation and structural changes due to vibrational excitation are less well understood.
View Article and Find Full Text PDFPolycyclic aromatic hydrocarbons (PAHs) are thought to be a major constituent of astrophysical environments, being the carriers of the ubiquitous aromatic infrared bands (AIBs) observed in the spectra of galactic and extra-galactic sources that are irradiated by ultraviolet (UV) photons. Small (2-cycles) PAHs were unambiguously detected in the TMC-1 dark cloud, showing that PAH growth pathways exist even at low temperatures. The processing of PAHs by UV photons also leads to their fragmentation, which has been recognized in recent years as an alternative route to the generally accepted bottom-up chemical pathways for the formation of complex hydrocarbons in UV-rich interstellar regions.
View Article and Find Full Text PDFThe H-loss products (CHN) from the dissociative ionization of aniline (CHN) have been studied by infrared predissociation spectroscopy in a cryogenic ion trap instrument at the free electron laser for infrared experiments (FELIX) laboratory. Broadband and narrow line width vibrational spectra in the spectral fingerprint region of 550-1800 cm have been recorded. The comparison to calculated spectra of the potential isomeric structures of the fragment ions reveals that the dominant fragments are five-membered cyano-cyclopentadiene ions.
View Article and Find Full Text PDFAmorphous solid water (ASW) is one of the most widely studied solid phase systems. A better understanding of the nature of inter- and intramolecular forces in ASW is, however, still required to correctly interpret the catalytic role of ASW in the formation and preservation of molecular species in environments such as the icy surfaces of Solar System objects, on interstellar icy dust grains, and potentially even in the upper layers of the Earth's atmosphere. In this work, we have systematically exposed porous ASW (pASW) to mid-infrared radiation generated by a free-electron laser at the HFML-FELIX facility in The Netherlands to study the effect of vibrational energy injection into the surface and bulk modes of pASW.
View Article and Find Full Text PDFThird-order non-linearities are important because they allow control over light pulses in ubiquitous high-quality centro-symmetric materials like silicon and silica. Degenerate four-wave mixing provides a direct measure of the third-order non-linear sheet susceptibility χL (where L represents the material thickness) as well as technological possibilities such as optically gated detection and emission of photons. Using picosecond pulses from a free electron laser, we show that silicon doped with P or Bi has a value of χL in the THz domain that is higher than that reported for any other material in any wavelength band.
View Article and Find Full Text PDFThe picosecond dynamics of excited charge carriers in the silicon substrate of THz metamaterial antennas was studied at different wavelengths. Time-resolved THz pump-THz probe spectroscopy was performed with light from a tunable free electron laser in the 9.3-16.
View Article and Find Full Text PDFCombining the individual analytical strengths of mass spectrometry and infrared spectroscopy, infrared ion spectroscopy is increasingly recognized as a powerful tool for small-molecule identification in a wide range of analytical applications. Mass spectrometry is itself a leading analytical technique for small-molecule identification on the merit of its outstanding sensitivity, selectivity and versatility. The foremost shortcoming of the technique, however, is its limited ability to directly probe molecular structure, especially when contrasted against spectroscopic techniques.
View Article and Find Full Text PDFWe report the first gas-phase vibrational spectra of the hydrocarbon ions CH and CH. The ions were produced by electron impact ionization of allene. Vibrational spectra of the mass-selected ions tagged with Ne were recorded using infrared predissociation spectroscopy in a cryogenic ion trap instrument using the intense and widely tunable radiation of a free electron laser.
View Article and Find Full Text PDFUsing the helium nanodroplet isolation setup at the ultrabright free-electron laser source FELIX in Nijmegen (BoHeNDI@FELIX), the intermolecular modes of water dimer in the frequency region from 70 to 550 cm were recorded. Observed bands were assigned to donor torsion, acceptor wag, acceptor twist, intermolecular stretch, donor torsion overtone, and in-plane and out-of-plane librational modes. This experimental data set provides a sensitive test for state-of-the-art water potentials and dipole moment surfaces.
View Article and Find Full Text PDFChemical reactions at ultralow temperatures are of fundamental importance to primordial molecular evolution as it occurs on icy mantles of dust nanoparticles or on ultracold water clusters in dense interstellar clouds. As we show, studying reactions in a stepwise manner in ultracold helium nanodroplets by mass-selective infrared (IR) spectroscopy provides an avenue to mimic these "stardust conditions" in the laboratory. In our joint experimental/theoretical study, in which we successively add HO molecules to HCl, we disclose a unique IR fingerprint at 1337 cm that heralds hydronium (HO) formation and, thus, acid dissociation generating solvated protons.
View Article and Find Full Text PDFThe combination of a 4 K 22-pole ion trap instrument, FELion, with the widely tunable free electron lasers at the FELIX Laboratory is described in detail. It allows for wide-range infrared vibrational spectroscopy of molecular ions. In this study, the apparatus is used for infrared vibrational predissociation (IR-PD) measurements of the simple alcohol cations of methanol and ethanol as well as their protonated forms.
View Article and Find Full Text PDFThe fundamental origins surrounding the dynamics of disordered solids near their characteristic glass transitions continue to be fiercely debated, even though a vast number of materials can form amorphous solids, including small-molecule organic, inorganic, covalent, metallic, and even large biological systems. The glass-transition temperature, T, can be readily detected by a diverse set of techniques, but given that these measurement modalities probe vastly different processes, there has been significant debate regarding the question of why T can be detected across all of them. Here we show clear experimental and computational evidence in support of a theory that proposes that the shape and structure of the potential-energy surface (PES) is the fundamental factor underlying the glass-transition processes, regardless of the frequency that experimental methods probe.
View Article and Find Full Text PDFUnderstanding of the nature and extent of chemical bonding in uranyl coordination complexes is crucial for the design of new ligands for nuclear waste separation, uranium extraction from seawater, and other applications. We report here the synthesis, infrared spectroscopic characterization, and quantum chemical studies of a molecular uranyl-di-15-crown-5 complex. The structure and bonding of this unique complex featuring a distinctive 6-fold coplanar coordination staggered sandwich structure and an unusual non-perpendicular orientation of the uranyl moiety are evaluated using density functional theory and chemical bonding analyses.
View Article and Find Full Text PDFThe interaction of delocalized π-electrons with molecular vibrations is key to charge transport processes in π-conjugated organic materials based on aromatic monomers. Yet the role that specific aromatic motifs play on charge transfer is poorly understood. Here we show that the molecular edge topology in charged catacondensed aromatic hydrocarbons influences the Herzberg-Teller coupling of π-electrons with molecular vibrations.
View Article and Find Full Text PDFWe present the results of calculation and experimental testing of an achromatic polarization converter and a composite terahertz waveplate (WP), which are represented by sets of plane-parallel birefringent plates with in-plane birefringence axis. The calculations took into account the effect of interference, which was especially prominent when plates were separated by an air gap. The possibility of development of a spectrum analyzer design based on a set of WPs is also discussed.
View Article and Find Full Text PDFFor decades, protonated methane, CH(5)(+), has provided new surprises and challenges for both experimentalists and theoreticians. This is because of the correlated large-amplitude motion of its five protons around the carbon nucleus, which leads to so-called hydrogen scrambling and causes a fluxional molecular structure. Here, the infrared spectra of all its H/D isotopologues have been measured using the 'Laser Induced Reactions' technique.
View Article and Find Full Text PDF