Publications by authors named "Britta Gewecke"

Calcium (Ca(2+)) signaling in immune cells, including macrophages, controls a wide range of effector functions that are critical for host defense and contribute to inflammation and autoimmune diseases. However, receptor-mediated Ca(2+) responses consist of complex mechanisms that make it difficult to identify the pathogenesis and develop therapy. Previous studies have revealed the importance of the Ca(2+) sensor STIM1 and store-operated Ca(2+)-entry (SOCE) for Fcγ-receptor activation and IgG-induced inflammation.

View Article and Find Full Text PDF

Stromal interaction molecule 1 (STIM1)-dependent store operated calcium-entry (SOCE) through Orai1-mediated calcium (Ca(2+) ) influx is considered a major pathway of Ca(2+) signaling, serving T-cell, mast cell, and platelet responses. Here, we show that Orai1 is critical for neutrophil function. Orai1-deficient neutrophils present defects in fMLP and complement C5a-induced Ca(2+) influx and migration, although they respond normally to another chemoattractant, CXCL2.

View Article and Find Full Text PDF

Heterotrimeric G proteins of the Gα(i) family have been implicated in signaling pathways regulating cell migration in immune diseases. The Gα(i)-protein-coupled C5a receptor is a critical regulator of IgG FcR function in experimental models of immune complex (IC)-induced inflammation. By using mice deficient for Gα(i2) or Gα(i3), we show that Gα(i2) is necessary for neutrophil influx in skin and lung Arthus reactions and agonist-induced neutrophilia in the peritoneum, whereas Gα(i3) plays a less critical but variable role.

View Article and Find Full Text PDF

Vaccination against Pseudomonas aeruginosa is a desirable, yet challenging strategy for prevention of airway infection in patients with cystic fibrosis. We compared the formation of antibodies in lower airways induced by systemic and mucosal vaccination strategies. We immunised 48 volunteers in six vaccination groups with either a systemic, a nasal, or four newly constructed oral live vaccines based on attenuated live Salmonella (strains CVD908 and Ty21a), followed by a systemic booster vaccination.

View Article and Find Full Text PDF

Background: Vaccination against Pseudomonas aeruginosa is a desirable albeit challenging strategy for prevention of airway infection in patients with cystic fibrosis. We assessed the immunogenicity of a nasal vaccine based on the outer membrane proteins F and I from Pseudomonas aeruginosa in the lower airways in a phase I/II clinical trial.

Methods: N = 12 healthy volunteers received 2 nasal vaccinations with an OprF-OprI gel as a primary and a systemic (n = 6) or a nasal booster vaccination (n = 6).

View Article and Find Full Text PDF

We constructed an oral live vaccine based on the attenuated aroA mutant Salmonella enterica serovar Typhimurium strain SL3261 expressing outer membrane proteins F and I (OprF-OprI) from Pseudomonas aeruginosa and investigated it in a mouse model. Strains with in vivo inducible protein expression with the PpacC promoter showed good infection rates and immunogenicity but failed to engender detectable antibodies in the lung. However, a systemic booster vaccination following an oral primary immunization yielded high immunoglobulin A (IgA) and IgG antibody levels in both upper and lower airways superior to conventional systemic or mucosal booster vaccination alone.

View Article and Find Full Text PDF