Deregulated DNA methylation leading to transcriptional inactivation of certain genes occurs frequently in non-small-cell lung cancers (NSCLCs). As well as protein-coding genes, microRNA (miRNA)-coding genes may be targets for methylation in NSCLCs; however, the number of known methylated miRNA genes is still small. Thus, we investigated methylation of miRNA genes in primary tumour (TU) samples and corresponding non-malignant lung tissue (NL) samples of 50 NSCLC patients by using methylated DNA immunoprecipitation followed by custom-designed tiling microarray analyses (MeDIP-chip), and 252 differentially methylated probes between TU samples and NL samples were identified.
View Article and Find Full Text PDFBackground: DNA methylation regulates together with other epigenetic mechanisms the transcriptional activity of genes and is involved in the pathogenesis of malignant diseases including lung cancer. In non-small cell lung cancer (NSCLC) various tumor suppressor genes are already known to be tumor-specifically methylated. However, from the vast majority of a large number of genes which were identified to be tumor-specifically methylated, tumor-specific methylation was unknown so far.
View Article and Find Full Text PDFIn our study, we investigated the role of ZNF677 in non-small cell lung cancers (NSCLC). By comparing ZNF677 expression in primary tumor (TU) and in the majority of cases also of corresponding non-malignant lung tissue (NL) samples from > 1,000 NSCLC patients, we found tumor-specific downregulation of ZNF677 expression (adjusted p-values < 0.001).
View Article and Find Full Text PDFDNA methylation is part of the epigenetic gene regulation complex, which is relevant for the pathogenesis of cancer. We performed a genome-wide search for methylated CpG islands in tumors and corresponding non-malignant lung tissue samples of 101 stages I-III non-small cell lung cancer (NSCLC) patients by combining methylated DNA immunoprecipitation and microarray analysis. Overall, we identified 2414 genomic positions differentially methylated between tumor and non-malignant lung tissue samples.
View Article and Find Full Text PDFPurpose: The major aim of this study was to investigate the role of DNA methylation (referred to as methylation) on miRNA silencing in non-small cell lung cancers (NSCLC).
Experimental Design: We conducted microarray expression analyses of 856 miRNAs in NSCLC A549 cells before and after treatment with the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine (Aza-dC) and with a combination of Aza-dC and the histone deacetylase inhibitor trichostatin A. miRNA methylation was determined in 11 NSCLC cell lines and in primary tumors and corresponding nonmalignant lung tissue samples of 101 patients with stage I-III NSCLC.