Objective: Adverse drug reactions (ADRs) are a significant healthcare concern. They are often documented as free text in electronic health records (EHRs), making them challenging to use in clinical decision support systems (CDSS). The study aimed to develop a text mining algorithm to identify ADRs in free text of Dutch EHRs.
View Article and Find Full Text PDFObjective: Combining text mining (TM) and clinical decision support (CDS) could improve diagnostic and therapeutic processes in clinical practice. This review summarizes current knowledge of the TM-CDS combination in clinical practice, including their intended purpose, implementation in clinical practice, and barriers to such implementation.
Materials And Methods: A search was conducted in PubMed, EMBASE, and Cochrane Library databases to identify full-text English language studies published before January 2022 with TM-CDS combination in clinical practice.
Drug-drug interactions (DDIs) frequently trigger adverse drug events or reduced efficacy. Most DDI alerts, however, are overridden because of irrelevance for the specific patient. Basic DDI clinical decision support (CDS) systems offer limited possibilities for decreasing the number of irrelevant DDI alerts without missing relevant ones.
View Article and Find Full Text PDFBackground: Adverse drug reactions (ADRs) are estimated to be the fifth cause of hospital death. Up to 50% are potentially preventable and a significant number are recurrent (reADRs). Clinical decision support systems have been used to prevent reADRs using structured reporting concerning the patient's ADR experience, which in current clinical practice is poorly performed.
View Article and Find Full Text PDF