Publications by authors named "Britt Heidinger"

Many songbirds begin active incubation after laying their penultimate egg, resulting in synchronous hatching of the clutch except for a last-hatched individual ("runt") that hatches with a size deficit and competitive disadvantage to siblings when begging for food. However, climate change may elevate temperatures and cause environmental incubation as eggs are laid, resulting in asynchronous hatching and larger size hierarchies among siblings. Although previous work demonstrated that asynchronous hatching reduces nestling growth and survival relative to synchrony, the physiological mechanisms underlying these effects are unclear.

View Article and Find Full Text PDF

The mechanisms that underlie senescence are not well understood in insects. Telomeres are conserved repetitive sequences at chromosome ends that protect DNA during replication. In many vertebrates, telomeres shorten during cell division and in response to stress and are often used as a cellular marker of senescence.

View Article and Find Full Text PDF

The hypothalamic-pituitary-adrenal (HPA) axis coordinates an organism's response to environmental stress. The responsiveness and sensitivity of an offspring's stress response may be shaped not only by stressors encountered in their early post-natal environment but also by stressors in their parent's environment. Yet, few studies have considered how stressors encountered in both of these early life environments may function together to impact the developing HPA axis.

View Article and Find Full Text PDF

In many organisms, rapidly changing environmental conditions are inducing dramatic shifts in diverse phenotypic traits with consequences for fitness and population viability. However, the mechanisms that underlie these responses remain poorly understood. Endocrine signalling systems often influence suites of traits and are sensitive to changes in environmental conditions; they are thus ideal candidates for uncovering both plastic and evolved consequences of climate change.

View Article and Find Full Text PDF

An individual's telomere length early in life may reflect or contribute to key life-history processes sensitive to environmental variation. Yet, the relative importance of genetic and environmental factors in shaping early-life telomere length is not well understood as it requires samples collected from multiple generations with known developmental histories. We used a confirmed pedigree and conducted an animal model analysis of telomere lengths obtained from nestling house sparrows (Passer domesticus) sampled over a span of 22 years.

View Article and Find Full Text PDF

AbstractDeveloping organisms often plastically modify growth in response to environmental circumstances, which may be adaptive but is expected to entail long-term costs. However, the mechanisms that mediate these growth adjustments and any associated costs are less well understood. In vertebrates, one mechanism that may be important in this context is the highly conserved signaling factor insulin-like growth factor 1 (IGF-1), which is frequently positively related to postnatal growth and negatively related to longevity.

View Article and Find Full Text PDF

Epigenetic modifications such as DNA methylation are important mechanisms for mediating developmental plasticity, where ontogenetic processes and their phenotypic outcomes are shaped by early environments. In particular, changes in DNA methylation of genes within the hypothalamic-pituitary-adrenal (HPA) axis can impact offspring growth and development. This relationship has been well documented in mammals but is less understood in other taxa.

View Article and Find Full Text PDF

Parental stress often has long-term consequences for offspring. However, the mechanisms underlying these effects and how they are shaped by conditions offspring subsequently experience are poorly understood. Telomeres, which often shorten in response to stress and predict longevity, may contribute to, and/or reflect these cross-generational effects.

View Article and Find Full Text PDF

In vertebrates, exposure to diverse stressors during early life activates a stress response that can initiate compensatory mechanisms or promote cellular damage with long-term fitness consequences. A growing number of studies associate exposure to stressors during early life with increased damage to telomeres (i.e.

View Article and Find Full Text PDF

The insulin and insulin-like signalling (IIS) network plays an important role in mediating several life-history traits, including growth, reproduction and senescence. Although insulin-like growth factors (IGFs) 1 and 2 are both key hormones in the vertebrate IIS network, research on IGF2 in juveniles and adults has been largely neglected because early biomedical research on rodents found negligible IGF2 postnatal expression. Here, we challenge this assumption and ask to what degree IGF2 is expressed during postnatal life across amniotes by quantifying the relative gene expression of and using publicly available RNAseq data for 82 amniote species and quantitative polymerase chain reaction on liver cDNA at embryonic, juvenile and adult stages for two lizard, bird and mouse species.

View Article and Find Full Text PDF

Prolonged or repeated episodes of environmental stress could be especially detrimental for developing young, via impaired growth or development. Despite this, most studies investigating the effects of human recreational and tourism activities have focused on adults. An increasing demand for nature-based tourism in remote locations means that many seabirds, which have evolved largely in the absence of predators and humans, are being exposed to novel pressures.

View Article and Find Full Text PDF

The effects of stress exposure are likely to vary depending on life-stage and stressor. While it has been postulated that mild stress exposure may have beneficial effects, the duration of such effects and the underlying mechanisms are unclear. While the long-term effects of early-life stress are relatively well studied, we know much less about the effects of exposure in adulthood since the early- and adult-life environments are often similar.

View Article and Find Full Text PDF

The mechanisms that contribute to variation in lifetime reproductive success are not well understood. One possibility is that telomeres, conserved DNA sequences at chromosome ends that often shorten with age and stress exposures, may reflect differences in vital processes or influence fitness. Telomere length often predicts longevity, but longevity is only one component of fitness and little is known about how lifetime reproductive success is related to telomere dynamics in wild populations.

View Article and Find Full Text PDF

Although the pace of senescence varies considerably, the physiological systems that contribute to different patterns of senescence are not well understood, especially in long-lived vertebrates. Long-lived bony fish (i.e.

View Article and Find Full Text PDF

Parental age can affect offspring telomere length through heritable and epigenetic-like effects, but at what stage during development these effects are established is not well known. To address this, we conducted a cross-fostering experiment in common gulls (Larus canus) that enabled us distinguish between pre- and post-natal parental age effects on offspring telomere length. Whole clutches were exchanged after clutch completion within and between parental age classes (young and old) and blood samples were collected from chicks at hatching and during the fastest growth phase (11 days later) to measure telomeres.

View Article and Find Full Text PDF

Telomeres, protective caps at the end of chromosomes, are often positively related to lifespan and are thought to be an important mechanism of organismal aging. To better understand the casual relationships between telomere length and longevity, it is essential to be able to experimentally manipulate telomere dynamics (length and loss rate). Previous studies suggest that exposure to TA-65, an extract from the Chinese root Astragalus membranaceus, activates telomerase, lengthens telomeres, increases the growth of keratin-based structures, and boosts the immune system in adults.

View Article and Find Full Text PDF

Reproductive investment often comes at a cost to longevity, but the mechanisms that underlie these long-term effects are not well understood. In male vertebrates, elevated testosterone has been shown to increase reproductive success, but simultaneously to decrease survival. One factor that may contribute to or serve as a biomarker of these long-term effects of testosterone on longevity is telomeres, which are often positively related to lifespan and have been shown to shorten in response to reproduction.

View Article and Find Full Text PDF

Parental age at offspring conception often influences offspring longevity, but the mechanisms underlying this link are poorly understood. One mechanism that may be important is telomeres, highly conserved, repetitive sections of non-coding DNA that form protective caps at chromosome ends and are often positively associated with longevity. Here, the potential pathways by which the age of the parents at the time of conception may impact offspring telomeres are described first, including direct effects on parental gamete telomeres and indirect effects on offspring telomere loss during pre- or post-natal development.

View Article and Find Full Text PDF
Article Synopsis
  • Offspring from older parents, known as the Lansing effect, often have shorter lifespans, but understanding the exact causes is challenging due to factors like parental age and environment.
  • A study on zebra finches showed that maternal age negatively impacts offspring telomere length, with an average reduction of 39% when comparing different ages.
  • Young mothers facing challenging conditions produced sons with shorter telomeres, but this effect was not observed in daughters or when mothers were older, indicating complex interactions between age, environment, and offspring health.
View Article and Find Full Text PDF

Although most organisms respond to environmental and social stressors by initiating a stress response that is expected to increase fitness, we currently lack information about how the stress response is integrated across levels of biological organization. Organismal biologists and physiological ecologists have tended to focus on questions related to how the glucocorticoid stress response varies across ecological contexts and is related to fitness, whereas, molecular and cellular biologists have typically investigated the fundamental underlying mechanisms. However, it is becoming increasingly clear that a comprehensive understanding of the evolution of the stress response will require integrative studies that span levels of analyses.

View Article and Find Full Text PDF

Decades of research into stress responses have highlighted large variation among individuals, populations, and species, and the sources of this variation have been a center of research across disciplines. The most common measure of the vertebrate stress response is glucocorticoids. However, the predictive power of glucocorticoid responses to fitness is surprisingly low.

View Article and Find Full Text PDF

Pathogens are potent selective forces that can reduce the fitness of their hosts. While studies of the short-term energetic costs of infections are accumulating, the long-term costs have only just started to be investigated. Such delayed costs may, at least in part, be mediated by telomere erosion.

View Article and Find Full Text PDF

Annual reproductive success is often highest in individuals that initiate breeding early, yet relatively few individuals start breeding during this apparently optimal time. This suggests that individuals, particularly females who ultimately dictate when offspring are born, incur costs by initiating reproduction early in the season. We hypothesized that increases in the ageing rate of somatic cells may be one such cost.

View Article and Find Full Text PDF

Female vertebrates that breed earlier in the season generally have greater reproductive success. However, evidence suggests that breeding early may be costly, thus leading to the prediction that females with fewer future reproductive events will breed earlier in the season. While chronological age is a good indicator of remaining life span, telomere lengths may also be good biomarkers of longevity as they potentially reflect lifetime wear and tear (i.

View Article and Find Full Text PDF

Collection of semen may be useful for a wide range of applications including studies involving sperm quality, sperm telomere dynamics, and epigenetics. Birds are widely used subjects in biological research and are ideal for studies involving repeated sperm samples. However, few resources are currently available for those wishing to learn how to collect and extract DNA from avian sperm.

View Article and Find Full Text PDF