Publications by authors named "Britney O Pennington"

Retinal pigment epithelial (RPE) cells are exclusive to the retina, critically multifunctional in maintaining the visual functions and health of photoreceptors and the retina. Despite their vital functions throughout lifetime, RPE cells lack regenerative capacity, rendering them vulnerable which can lead to degenerative retinal diseases. With advancements in stem cell technology enabling the differentiation of functional cells from pluripotent stem cells and leveraging the robust autocrine and paracrine functions of RPE cells, extracellular vesicles (EVs) secreted by RPE cells hold significant therapeutic potential in supplementing RPE cell activity.

View Article and Find Full Text PDF

Dysfunction of the retinal pigment epithelium (RPE) is a common shared pathology in major degenerative retinal diseases despite variations in the primary etiologies of each disease. Due to their demanding and indispensable functional roles throughout the lifetime, RPE cells are vulnerable to genetic predisposition, external stress, and aging processes. Building upon recent advancements in stem cell technology for differentiating healthy RPE cells and recognizing the significant roles of small extracellular vesicles (sEV) in cellular paracrine and autocrine actions, we investigated the hypothesis that the RPE-secreted sEV alone can restore essential RPE functions and rescue photoreceptors in RPE dysfunction-driven retinal degeneration.

View Article and Find Full Text PDF

Purpose: Isolating extracellular vesicles (EVs) with high yield, replicable purity, and characterization remains a bottleneck in the development of EV therapeutics. To address these challenges, the current study aims to establish the necessary framework for preclinical and clinical studies in the development of stem cell-derived intraocular EV therapeutics.

Methods: Small EVs (sEVs) were separated from the conditioned cell culture medium (CCM) of the human embryogenic stem cell-derived fully polarized retinal pigment epithelium (hESC-RPE-sEV) by a commercially available microfluidic tangential flow filtration (TFF) device ExoDisc (ED) or differential ultracentrifugation (dUC).

View Article and Find Full Text PDF

Purpose: To report long-term results from a phase 1/2a clinical trial assessment of a scaffold-based human embryonic stem cell-derived retinal pigmented epithelium (RPE) implant in patients with advanced geographic atrophy (GA).

Design: A single-arm, open-label phase 1/2a clinical trial approved by the United States Food and Drug Administration.

Participants: Patients were 69-85 years of age at the time of enrollment and were legally blind in the treated eye (best-corrected visual acuity [BCVA], ≤ 20/200) as a result of GA involving the fovea.

View Article and Find Full Text PDF

Dry age-related macular degeneration (AMD) is estimated to impact nearly 300 million individuals globally by 2040. While no treatment options are currently available, multiple clinical trials investigating retinal pigmented epithelial cells derived from human pluripotent stem cells (hPSC-RPE) as a cellular replacement therapeutic are currently underway. It has been estimated that a production capacity of >109 RPE cells annually would be required to treat the afflicted population, but current manufacturing protocols are limited, being labor-intensive and time-consuming.

View Article and Find Full Text PDF
Article Synopsis
  • * Postmortem analysis of one patient shows that the implanted donor RPE cells survived for two years and demonstrated functional characteristics, indicating they can integrate successfully into the host tissue.
  • * Despite the significant immune system mismatch between the donor and the host, no adverse immune reactions or inflammation were observed in any patients, suggesting the potential for successful cell-based therapies without the need for long-term immune suppression.
View Article and Find Full Text PDF
Article Synopsis
  • This study reports a 1-year follow-up on a clinical trial that tested a new subretinal implant using human embryonic stem cell-derived retinal pigment epithelium (RPE) cells for patients with advanced non-neovascular age-related macular degeneration (NNAMD).
  • The trial involved 16 participants, focused on safety over the course of a year, and included a customized insertion procedure and low-dose immunosuppression to prevent rejection.
  • Results indicated the implant was generally safe, with some patients showing slight improvements in vision, though the study was not specifically designed to evaluate efficacy.
View Article and Find Full Text PDF

Age-related macular degeneration (AMD) is the primary cause of blindness in adults over 60 years of age, and clinical trials are currently assessing the therapeutic potential of retinal pigmented epithelial (RPE) cell monolayers on implantable scaffolds to treat this disease. However, challenges related to the culture, long-term storage, and long-distance transport of such implants currently limit the widespread use of adherent RPE cells as therapeutics. Here we report a xeno-free protocol to cryopreserve a confluent monolayer of clinical-grade, human embryonic stem cell-derived RPE cells on a parylene scaffold (REPS) that yields viable, polarized, and functional RPE cells post-thaw.

View Article and Find Full Text PDF

Retinal pigment epithelium (RPE) dysfunction and loss are a hallmark of non-neovascular age-related macular degeneration (NNAMD). Without the RPE, a majority of overlying photoreceptors ultimately degenerate, leading to severe, progressive vision loss. Clinical and histological studies suggest that RPE replacement strategies may delay disease progression or restore vision.

View Article and Find Full Text PDF

Purpose: The application of induced pluripotent stem cell-derived retinal pigmented epithelium (iPSC-RPE) in patients with retinal degenerative disease is making headway toward the clinic, with clinical trials already underway. Multiple groups have developed methods for RPE differentiation from pluripotent cells, but previous studies have shown variability in iPSC propensity to differentiate into RPE.

Methods: This study provides a comparison between 2 different methods for RPE differentiation: (1) a commonly used spontaneous continuously adherent culture (SCAC) protocol and (2) a more rapid, directed differentiation using growth factors.

View Article and Find Full Text PDF

Age-related macular degeneration (AMD) is the leading cause of blindness in the western world, which severely decreases the quality of life in the patients and places an economic burden on their families and society. The disease is caused by the dysfunction of a specialized cell layer in the back of the eye called the retinal pigmented epithelium (RPE). Pluripotent stem cells can provide an unlimited source of RPE, and laboratories around the world are investigating their potential as therapies for AMD.

View Article and Find Full Text PDF

Age-related macular degeneration (AMD), a leading cause of blindness, is characterized by the death of the retinal pigmented epithelium (RPE), which is a monolayer posterior to the retina that supports the photoreceptors. Human embryonic stem cells (hESCs) can generate an unlimited source of RPE for cellular therapies, and clinical trials have been initiated. However, protocols for RPE derivation using defined conditions free of nonhuman derivatives (xeno-free) are preferred for clinical translation.

View Article and Find Full Text PDF

We developed an interactive exercise to teach students how to draw the structures of the 20 standard amino acids and to identify the one-letter abbreviations by modifying the familiar game of "Hangman." Amino acid structures were used to represent single letters throughout the game. To provide additional practice in identifying structures, hints to the answers were written in "amino acid sentences" for the students to translate.

View Article and Find Full Text PDF

Controlling the differentiation of human pluripotent stem cells is the goal of many laboratories, both to study normal human development and to generate cells for transplantation. One important cell type under investigation is the retinal pigmented epithelium (RPE). Age-related macular degeneration (AMD), the leading cause of blindness in the Western world, is caused by dysfunction and death of the RPE.

View Article and Find Full Text PDF

The Arabidopsis thaliana genome contains more than 200 rapidly evolved resistance (R)-like genes coding for nucleotide binding leucine-rich repeat (NB-LRR) and their related proteins. A dozen of them are shown to play key roles in plant responses to biotic attacks, and they need to be repressed in the absence of biotic stresses to prevent activation of defense responses that are usually detrimental to plant growth and development. Here, we show that the Arabidopsis BON1 and BON3 genes, two members of the evolutionarily conserved copine, are negative regulators of several R-like genes.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionk91t1mn013eu97tl2ri8btpdi7baob0t): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once