Vision loss in age-related macular degeneration (AMD) stems from disruption of photoreceptor cells in the macula, the central retinal area required for high-acuity vision. Mice and rats have no macula, but surgical insertion of a subretinal implant can induce localized photoreceptor degeneration due to chronic separation from retinal pigment epithelium, simulating a key aspect of AMD. We find that the implant-induced loss of photoreceptors in rat retina leads to local changes in the physiology of downstream retinal ganglion cells (RGCs), similar to changes in RGCs of rodent models of retinitis pigmentosa (RP), an inherited disease causing retina-wide photoreceptor degeneration.
View Article and Find Full Text PDFLight responses are initiated in photoreceptors, processed by interneurons, and synaptically transmitted to retinal ganglion cells (RGCs), which send information to the brain. Retinitis pigmentosa (RP) is a blinding disease caused by photoreceptor degeneration, depriving downstream neurons of light-sensitive input. Photoreceptor degeneration also triggers hyperactive firing of RGCs, obscuring light responses initiated by surviving photoreceptors.
View Article and Find Full Text PDFAzobenzene photoswitches confer light sensitivity onto retinal ganglion cells (RGCs) in blind mice, making these compounds promising candidates as vision-restoring drugs in humans with degenerative blindness. Remarkably, photosensitization manifests only in animals with photoreceptor degeneration and is absent from those with intact rods and cones. Here we show that P2X receptors mediate the entry of photoswitches into RGCs, where they associate with voltage-gated ion channels, enabling light to control action-potential firing.
View Article and Find Full Text PDFGram-negative bacterial infections are accompanied by inflammation and somatic or visceral pain. These symptoms are generally attributed to sensitization of nociceptors by inflammatory mediators released by immune cells. Nociceptor sensitization during inflammation occurs through activation of the Toll-like receptor 4 (TLR4) signalling pathway by lipopolysaccharide (LPS), a toxic by-product of bacterial lysis.
View Article and Find Full Text PDFActivation of the TRPM8 ion channel in sensory nerve endings produces a sensation of pleasant coolness. Here we show that inflammatory mediators such as bradykinin and histamine inhibit TRPM8 in intact sensory nerves, but do not do so through conventional signalling pathways. The G-protein subunit Gα(q) instead binds to TRPM8 and when activated by a Gq-coupled receptor directly inhibits ion channel activity.
View Article and Find Full Text PDFCurr Pharm Biotechnol
January 2011
Transient Receptor Potential channels are exquisite molecular transducers of multiple physical and chemical stimuli, hence the raising interest to study their relevance to Sensory Biology. Here we discuss a number of aspects of the biophysical and pharmacological properties of TRP channels, which we consider essential for a clear understanding of their sensory function in vivo. By examining concrete examples extracted from recent literature we illustrate that TRP channel research is a field in motion, and that many established dogmas on biophysical properties, drug specificity and physiological role are continuously reshaped, and sometimes even dismantled.
View Article and Find Full Text PDFPeripheral interactions between nociceptive fibers and mast cells contribute to inflammatory pain, but little is known about mechanisms mediating neuro-immune communication. Here we show that metalloproteinase MT5-MMP (MMP-24) is an essential mediator of peripheral thermal nociception and inflammatory hyperalgesia. We report that MT5-MMP is expressed by CGRP-containing peptidergic nociceptors in dorsal root ganglia and that Mmp24-deficient mice display enhanced sensitivity to noxious thermal stimuli under basal conditions.
View Article and Find Full Text PDF