Haemochromatosis is a genetic disease caused by hepcidin deficiency, responsible for an increase in intestinal iron absorption. Haemochromatosis is associated with homozygosity for the p.Cys282Tyr mutation.
View Article and Find Full Text PDFBackground: Hemochromatosis is a genetic condition of iron overload caused by deficiency of hepcidin. In a previous stage of this study, patients with suspected hemochromatosis had their quality of life (QL) measured. We observed that QL scores differed among genotypic groups of patients.
View Article and Find Full Text PDFHemochromatosis (HC) is a genetically heterogeneous disorder in which uncontrolled intestinal iron absorption may lead to progressive iron overload (IO) responsible for disabling and life-threatening complications such as arthritis, diabetes, heart failure, hepatic cirrhosis, and hepatocellular carcinoma. The recent advances in the knowledge of pathophysiology and molecular basis of iron metabolism have highlighted that HC is caused by mutations in at least 5 genes, resulting in insufficient hepcidin production or, rarely, resistance to hepcidin action. This has led to an HC classification based on different molecular subtypes, mainly reflecting successive gene discovery.
View Article and Find Full Text PDFMajor advances in the understanding of genetic iron overload have led to a clarification of the nosology and terminology of the related diseases. The term hemochromatosis should be reserved to the entities where iron overload is related to hepcidin deficiency or hepcidin resistance. The diagnosis of hemochromatosis is non-invasive, based on clinical examination, blood investigations and, whenever possible, magnetic resonance imaging.
View Article and Find Full Text PDFBlood Cells Mol Dis
September 2020
Background: Five main genes are associated with hemochromatosis; however, current studies show that, in addition to these genes, others may be associated with primary iron overload (IO). One of these is the bone morphogenetic protein 6 (BMP6), which encodes a protein that modulates hepcidin synthesis and, consequently, iron homeostasis.
Aim: To identify BMP6 gene pathogenic variants in patients with IO and non-homozygous genotype for the HFE p.
-related Hemochromatosis is the most common genetic iron overload disease in European populations, particularly of Nordic or Celtic ancestry. It is reported that the p.C282Y mutation is present in 1/10 people of northern European descent, resulting in one in two hundred people will be homozygous.
View Article and Find Full Text PDFThe role of iron in non-erythroid hematopoietic lineages and its implication in hemato-oncogenesis are still debated. Iron exerts an important role on hematopoietic stem cell transformation and on mature white blood cell differentiation. Iron acts experimentally as an oncogenic cofactor but its exact role in the transformation of the myelodysplastic syndrome into leukemia continues to be discussed.
View Article and Find Full Text PDFHereditary aceruloplasminemia (HA), related to mutations in the ceruloplasmin () gene, leads to iron accumulation. Ceruloplasmin ferroxidase activity being considered essential for macrophage iron release, macrophage iron overload is expected, but it is not found in hepatic and splenic macrophages in humans. Our objective was to get a better understanding of the mechanisms leading to iron excess in HA.
View Article and Find Full Text PDFIron excess increases the hepatic expression of hepcidin, the systemic iron metabolism regulator that favors iron sequestration in the spleen. Genetic iron overload related to hepcidin insufficiency decreases the spleen iron concentration and increases hepatic iron concentration, whereas during secondary iron overload, the hepcidin expression increases together with spleen iron concentration in addition to hepatic iron concentrations increase. Links between iron metabolism and other metals being suggested, our aim was to investigate, during iron overload, the relationships between the hepatic hepcidin expression level and the hepatic and splenic concentrations of iron, manganese, copper, zinc, and molybdenum, determined using inductively coupled plasma mass spectrometry.
View Article and Find Full Text PDFPharmaceuticals (Basel)
November 2018
Genetic hemochromatosis is an iron overload disease that is mainly related to the mutation in the gene. This gene controls the expression of hepcidin, a peptide secreted in plasma by the liver and regulates systemic iron distribution. Homozygous mutation induces hepcidin deficiency, leading to increased circulating transferrin saturation, and ultimately, iron accumulation in organs such as the liver, pancreas, heart, and bone.
View Article and Find Full Text PDFTransfus Clin Biol
February 2019
Iron overload pathophysiology has benefited from significant advances in the knowledge of iron metabolism and in molecular genetics. As a consequence, iron overload nosology has been revisited. The hematologist may be confronted to a number of iron overload syndromes, from genetic or acquired origin.
View Article and Find Full Text PDFAnemia is defined by a deficiency of hemoglobin, an iron-rich protein that binds oxygen in the blood. It can be due to multiple causes, either acquired or genetic. Alterations of genes involved in iron metabolism may be responsible, usually at a young age, for rare forms of chronic and often severe congenital anemia.
View Article and Find Full Text PDFHaemochromatosis is defined as systemic iron overload of genetic origin, caused by a reduction in the concentration of the iron regulatory hormone hepcidin, or a reduction in hepcidin-ferroportin binding. Hepcidin regulates the activity of ferroportin, which is the only identified cellular iron exporter. The most common form of haemochromatosis is due to homozygous mutations (specifically, the C282Y mutation) in HFE, which encodes hereditary haemochromatosis protein.
View Article and Find Full Text PDFAlthough guidelines are available for hereditary hemochromatosis, a high percentage of the recommendations within them are not shared between the different guidelines. Our main aim is to provide an objective, simple, brief, and practical set of recommendations about therapeutic aspects of HFE hemochromatosis for p.Cys282Tyr (C282Y/C282Y) homozygous genotype, based on the published scientific studies and guidelines, in a form that is reasonably comprehensible to patients and people without medical training.
View Article and Find Full Text PDFBackground: Hereditary hemochromatosis (HH) encompasses a group of autosomal recessive disorders mainly characterized by enhanced intestinal absorption of iron and its accumulation in parenchymal organs. HH diagnosis is based on iron biochemical and magnetic resonance imaging (MRI) assessment, and genetic testing. Questionnaires, such as SF-36 (short form health survey), have been increasingly used to assess the impact of diseases on the patient's quality of life (QL).
View Article and Find Full Text PDFMutat Res Rev Mutat Res
October 2017
Iron, as an essential nutrient, and the DNA, as the carrier of genetic information which is physically compacted into chromosomes, are both needed for normal life and well-being. Therefore, it is not surprising that close interactions exist between iron and the genome. On the one hand, iron, especially when present in excess, may alter genome stability through oxidative stress, and may favor cell cycle abnormalities and the development of malignant diseases.
View Article and Find Full Text PDFThe term hemochromatosis (HC) corresponds to several diseases characterized by systemic iron overload of genetic origin and affecting both the quality of life and life expectancy. Major improvement in the knowledge of iron metabolism permits to divide these diseases into two main pathophysiological categories. For most HC forms (types 1, 2, 3 and 4B HC) iron overload is related to cellular hepcidin deprivation which causes an increase of plasma iron concentration and the appearance of plasma non-transferrin bound iron.
View Article and Find Full Text PDFMany environmental agents, such as excessive alcohol intake, xenobiotics, and virus, are able to damage the human body, targeting especially the liver. Metal excess may also assault the liver. Thus, chronic iron overload may cause, especially when associated with cofactors, diffuse organ damage that is a source of significant morbidity and mortality.
View Article and Find Full Text PDFp.Cys282Tyr (C282Y) homozygosity explains most cases of HFE-related hemochromatosis, but a significant number of patients presenting with typical type I hemochromatosis phenotype remain unexplained. We sought to describe the clinical relevance of rare HFE variants in non-C282Y homozygotes.
View Article and Find Full Text PDFChronic iron overload, either of genetic (hemochromatoses) or acquired (transfusions) origin, leads to frequent disorders, affecting both the quality of life and life expectancy. Major recent advances in the knowledge of iron metabolism, together with advances in biology, imaging and drug design have already significantly improved the diagnostic and therapeutic approaches. These conceptual and technological ameliorations should, in the near future, continue to benefit the clinical management of iron overloaded patients.
View Article and Find Full Text PDFDue to major advances in the understanding of iron metabolism as well as in the bioche- iuical, imaging, and genetic domains: i) The nosologicalframework of hemochromatosis (HC) encompasses not only HFE-HC, by far the most frequent HC form, but also non-HFE HC diseases which comprise essentially juvenile HC and the ferroportin disease. ii) The diagnostic approach has become totally non invasive, based on clinical, imaging and biological data. iii) The treatment remains, for most forms, based on venesections, but the innovative emerging therapeutic approach is represented by hepcidin supplementation.
View Article and Find Full Text PDFBody iron has a very close relationship with the liver. Physiologically, the liver synthesizes transferrin, in charge of blood iron transport; ceruloplasmin, acting through its ferroxidase activity; and hepcidin, the master regulator of systemic iron. It also stores iron inside ferritin and serves as an iron reservoir, both protecting the cell from free iron toxicity and ensuring iron delivery to the body whenever needed.
View Article and Find Full Text PDF