Purpose: The purpose of this study is to identify novel urine protein biomarkers of bladder cancer using a Luminex based screening platform.
Materials And Methods: The current study examines urine samples from 66 subjects, comprised of 31 Urology clinic controls and 35 bladder cancer patients, using a Luminex based screening platform. ELISA validation was carried out for the top 4 prospective urine biomarkers using an independent cohort of 20 Urology clinic controls and 60 bladder cancer (BC) subjects.
Objective: The goal of these studies is to discover novel urinary biomarkers of lupus nephritis (LN).
Methods: Urine from systemic lupus erythematosus (SLE) patients was interrogated for 1000 proteins using a novel, quantitative planar protein microarray. Hits were validated in an independent SLE cohort with inactive, active non-renal (ANR) and active renal (AR) patients, in a cohort with concurrent renal biopsies, and in a longitudinal cohort.
Background: The isolation of lymphocytes - and removal of platelets (PLTs) and red blood cells (RBCs) - from an initial blood sample prior to culture is a key enabling step for effective manufacture of cellular therapies. Unfortunately, currently available methods suffer from various drawbacks, including low cell recovery, need for complex equipment, potential loss of sterility and/or high materials/labor cost.
Methods: A newly developed system for selectively concentrating leukocytes within precisely designed, but readily fabricated, microchannels was compared with conventional density gradient centrifugation with respect to: (i) ability to recover lymphocytes while removing PLTs/RBCs and (ii) growth rate and overall cell yield once expanded in culture.
Background: The use of centrifugation-based approaches for processing donated blood into components is routine in the industrialized world, as disparate storage conditions require the rapid separation of 'whole blood' into distinct red blood cell (RBC), platelet, and plasma products. However, the logistical complications and potential cellular damage associated with centrifugation/apheresis manufacturing of blood products are well documented. The objective of this study was to evaluate a proof-of-concept system for whole blood processing, which does not employ electromechanical parts, is easily portable, and can be operated immediately after donation with minimal human labor.
View Article and Find Full Text PDFWashed red blood cells (RBCs) are indicated for immunoglobulin A (IgA) deficient recipients. Centrifugation-based cell processors commonly used by hospital blood banks cannot consistently reduce IgA below the recommended levels, hence double washing is frequently required. Here, we describe a prototype of a simple, portable, disposable system capable of washing stored RBCs without centrifugation, while reducing IgA below 0.
View Article and Find Full Text PDFBackground: During hypothermic storage, a substantial fraction of red blood cells (RBCs) transforms from flexible discocytes to rigid sphero-echinocytes and spherocytes. Infusion of these irreversibly-damaged cells into the recipient during transfusion serves no therapeutic purpose and may contribute to adverse outcomes in some patients. In this proof-of-concept study we describe the use of hypotonic washing for selective removal of the irreversibly-damaged cells from stored blood.
View Article and Find Full Text PDFLeukocyte reduction of donated blood products substantially reduces the risk of a number of transfusion-related complications. Current 'leukoreduction' filters operate by trapping leukocytes within specialized filtration material, while allowing desired blood components to pass through. However, the continuous release of inflammatory cytokines from the retained leukocytes, as well as the potential for platelet activation and clogging, are significant drawbacks of conventional 'dead end' filtration.
View Article and Find Full Text PDFThis work describes the development of a novel microdevice for forensic DNA processing of reference swabs. This microdevice incorporates an enzyme-based assay for DNA preparation, which allows for faster processing times and reduced sample handling. Infrared-mediated PCR (IR-PCR) is used for STR amplification using a custom reaction mixture, allowing for amplification of STR loci in 45 min while circumventing the limitations of traditional block thermocyclers.
View Article and Find Full Text PDFRapid, inexpensive and simplistic nucleic acid testing (NAT) is pivotal in delivering biotechnology solutions at the point-of-care (POC). We present a poly(methylmethacrylate) (PMMA) microdevice where on-board infrared-mediated PCR amplification is seamlessly integrated with a particle-based, visual DNA detection for specific detection of bacterial targets in less than 35 minutes. Fluidic control is achieved using a capillary burst valve laser-ablated in a novel manner to confine the PCR reagents to a chamber during thermal cycling, and a manual torque-actuated pressure system to mobilize the fluid from the PCR chamber to the detection reservoir containing oligonucleotide-adducted magnetic particles.
View Article and Find Full Text PDFIn a recent publication, we presented a label-free method for the detection of specific DNA sequences through the hybridization-induced aggregation (HIA) of a pair of oligonucleotide-adducted magnetic particles. Here we show, through the use of modified hardware, that we are able to simultaneously analyze multiple (4) samples, and detect a 26-mer ssDNA sequence at femtomolar concentrations in minutes. As such, this work represents an improvement in throughput and a 100-fold improvement in sensitivity, compared to that reported previously.
View Article and Find Full Text PDFWe recently reported the 'pinwheel effect' as the foundation for a DNA assay based on a DNA concentration-dependent aggregation of silica-coated magnetic beads in a rotating magnetic field (RMF). Using a rotating magnet that generated a 5 cm magnetic field that impinged on a circular array of 5mm microwells, aggregation was found to only be effective in a single well at the center of the field. As a result, when multiple samples needed to be analyzed, the single-plex (single well) analysis was tedious, time-consuming and labor-intensive, as each well needed to be exposed to the center of the RMF in a serial manner for consistent well-to-well aggregation.
View Article and Find Full Text PDFCombining DNA and superparamagnetic beads in a rotating magnetic field produces multiparticle aggregates that are visually striking, enabling label-free optical detection and quantification of DNA at levels in the picogram per microliter range. DNA in biological samples can be quantified directly by simple analysis of optical images of microfluidic wells placed on a magnetic stirrer without prior DNA purification. Aggregation results from DNA/bead interactions driven either by the presence of a chaotrope (a nonspecific trigger for aggregation) or by hybridization with oligonucleotides on functionalized beads (sequence-specific).
View Article and Find Full Text PDFThe polymerase chain reaction (PCR) is critical for amplification of target sequences of DNA or RNA that have clinical, biological or forensic relevance. While extrinsic Fabry-Perot interferometry (EFPI) has been shown to be adequate for non-contact temperature sensing, the difficulty in defining a reflective surface that is semi-reflective, non-reactive for PCR compatibility and adherent for thermal bonding has limited its exploitation. Through the incorporation of a reflective surface fabricated using a thermally driven self-assembly of a platinum nanoparticle monolayer on the surface of the microfluidic chamber, an enhanced EFPI signal results, allowing for non-contact microfluidic temperature control instrumentation that uses infrared-mediated heating, convective forced-air cooling, and interferometic temperature sensing.
View Article and Find Full Text PDFA microfluidic device was developed to carry out integrated volume reduction and purification of nucleic acids from dilute, large volume biological samples commonly encountered in forensic genetic analysis. The dual-phase device seamlessly integrates two orthogonal solid-phase extraction (SPE) processes, a silica solid phase using chaotrope-driven binding and an ion exchange phase using totally aqueous chemistry (chitosan phase), providing the unique capability of removing polymerase chain reaction (PCR) inhibitors used in silica-based extractions (guanidine and isopropanol). Nucleic acids from a large volume sample are shown to undergo a substantial volume reduction on the silica phase, followed by a more stringent extraction on the chitosan phase.
View Article and Find Full Text PDFMicrodevices are often designed to process sample volumes on the order of tens of microliters and cannot typically accommodate larger volume samples without adversely affecting efficiency and greatly increasing analysis time. However, dilute, large-volume biological samples are frequently encountered, especially in forensic or clinical laboratories. A microdevice, capable of efficiently processing 0.
View Article and Find Full Text PDF