Publications by authors named "Brinch-Pedersen H"

The potato (Solanum tuberosum) is a staple food worldwide, but modern potato cultivation relies heavily on the use of pesticides to control pests and diseases. However, many wild Solanum species are highly resistant to biotic and abiotic stresses relevant for potato production. Several of those species have been used in potato breeding to confer resistances which has only been moderately successful.

View Article and Find Full Text PDF

Barley, a vital cereal crop worldwide, is hindered by hordeins, gluten proteins triggering adverse reactions in those with celiac disease (CeD) and non-celiac gluten sensitivity (NCGS). Recent barley breeding advancements focus on creating varieties with reduced hordein content. Researchers have developed ultra-low gluten barley mutants via targeted genetic modifications, showing significantly decreased hordein levels, potentially safe for CeD and NCGS individuals.

View Article and Find Full Text PDF

is a wild diploid tuber-bearing plant. We here demonstrate transgene-free genome editing of protoplasts and regeneration of gene-edited plants. We use ribonucleoproteins, consisting of Cas9 and sgRNA, assembled in vitro, to target a gene belonging to the nitrate and peptide transporter family.

View Article and Find Full Text PDF

Introduction: Induced modification of plant gene expression is of both fundamental and applied importance. Cis-acting regulatory elements (CREs) are major determinants of the spatiotemporal strength of gene expression. Yet, there are few examples where induced genetic variation in predetermined CREs has been exploited to improve or investigate crop plants.

View Article and Find Full Text PDF

Improving tolerance to ethylene-induced early senescence of flowers and fruits is of major economic importance for the ornamental and food industry. Genetic modifications of genes in the ethylene-signalling pathway have frequently resulted in increased tolerance but often with unwanted side effects. Here, we used CRISPR/Cas9 to knockout the function of two CpEil1 genes expressed in flowers of the diploid ornamental plant Campanula portenschlagiana.

View Article and Find Full Text PDF

Currently, the development of genome editing (GE) tools has provided a wide platform for targeted modification of plant genomes. However, the lack of versatile DNA delivery systems for a large variety of crop species has been the main bottleneck for improving crops with beneficial traits. Currently, the generation of plants with heritable mutations induced by GE tools mostly goes through tissue culture.

View Article and Find Full Text PDF

De novo domestication is a novel trend in plant genetics, where traits of wild or semi-wild species are changed by the use of modern precision breeding techniques so that they conform to modern cultivation. Out of more than 300,000 wild plant species, only a few were fully domesticated by humans in prehistory. Moreover, out of these few domesticated species, less than 10 species dominate world agricultural production by more than 80% today.

View Article and Find Full Text PDF

L. is an ancient crop used for fiber and seed production and not least for its content of cannabinoids used for medicine and as an intoxicant drug. Due to the psychedelic effect of one of the compounds, tetrahydrocannabinol (THC), many countries had regulations or bands on Cannabis growing, also as fiber or seed crop.

View Article and Find Full Text PDF

With the advent of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated protein (Cas) mediated genome editing, crop improvement has progressed significantly in recent years. In this genome editing tool, CRISPR-associated Cas nucleases are restricted to their target of DNA by their preferred protospacer adjacent motifs (PAMs). A number of CRISPR-Cas variants have been developed e.

View Article and Find Full Text PDF

Association genetic analysis empowered us to identify candidate genes underlying natural variation of morpho-physiological, antioxidants, and grain yield-related traits in barley. Novel intriguing genomic regions were identified and dissected. Salinity stress is one of the abiotic stresses that influence the morpho-physiological, antioxidants, and yield-related traits in crop plants.

View Article and Find Full Text PDF

Grain phytate, a mixed metal ion salt of inositol hexakisphosphate, accounts for 60%-80% of stored phosphorus in plants and is a potent antinutrient of non-ruminant animals including humans. Through neofunctionalization of purple acid phytases (PAPhy), some cereals such as wheat and rye have acquired particularly high mature grain phytase activity. As PAPhy activity supplies phosphate, liberates metal ions necessary for seedling emergence, and obviates antinutrient effects of phytate, its manipulation and control are targeted crop traits.

View Article and Find Full Text PDF

Background: Understanding the relationships between nutrition, human health and plant food source is among the highest priorities for public health. Therefore, enhancing the minerals content such as iron (Fe), zinc (Zn) and selenium (Se) in barley (Hordeum vulgare L.) grains is an urgent need to improve the nutritive value of barley grains in overcoming malnutrition and its potential consequencing.

View Article and Find Full Text PDF

Background: The effects of climate change, soil depletion, a growing world population putting pressure on food safety and security are major challenges for agriculture in the 21st century. The breeding success of the green revolution has decelerated and current programs can only offset the yield affecting factors.

Purpose And Scope: New approaches are urgently needed and "Genome Editing-accelerated Re-Domestication" (GEaReD) is proposed as a major new direction in plant breeding.

View Article and Find Full Text PDF

The use of plants as heterologous hosts to produce recombinant proteins has some intriguing advantages. There is, however, the potential of overloading the endoplasmic reticulum (ER) capacity when producing recombinant proteins in the seeds. This leads to an ER-stress condition and accumulating of unfolded proteins.

View Article and Find Full Text PDF

Nepenthesins are categorized under the subfamily of the nepenthesin-like plant aspartic proteases (PAPs) that form a distinct group of atypical PAPs. This study describes the effect of nepenthesin 1 () protease from barley ( L.) on fungal histidine acid phosphatase (HAP) phytase activity.

View Article and Find Full Text PDF

Black carrots are potent sources of anthocyanin for the natural food color industry as their anthocyanins contain very high percentages of acylated anthocyanins which are much more stable than non-acylated anthocyanins. Anthocyanins are synthesized by a specific branch of the phenylpropanoid pathway activated by a triad of R2R3-MYB, bHLH and WD40 transcription factors (TFs). Recent studies in black carrots have elucidated major anthocyanin related structural genes and also regulatory TFs.

View Article and Find Full Text PDF

Anthocyanins extracted from black carrots have received increased interest as natural colorants in recent years. The reason is mainly their high content of acylated anthocyanins that stabilizes the color and thereby increases the shelf-life of products colored with black carrot anthocyanins. Still, the main type of anthocyanins synthesized in all black carrot cultivars is cyanidin limiting their use as colorants due to the narrow color variation.

View Article and Find Full Text PDF

Mature grain phytase activity (MGPA) in the Triticea tribe cereals has evolved through gene duplications and neo-functionalization of the purple acid phosphatase phytase gene () in a common ancestor. Increased gene copy number of the gene expressed during seed development has augmented the MGPA in cereals like rye and wheat. PAPhy_a phytase is highly stable and a potent enzyme in feed.

View Article and Find Full Text PDF

Phytate and phytases in seeds are the subjects of numerous studies, dating back as far as the early 20th century. Most of these studies concern the anti-nutritional properties of phytate, and the prospect of alleviating the effects of phytate with phytase. As reasonable as this may be, it has led to a fragmentation of knowledge, which hampers the appreciation of the physiological system at hand.

View Article and Find Full Text PDF

Seeds have evolutionarily developed to store protein without immediately degrading it and constitute ideal tissues for recombinant protein storage. Unfortunately, the production of recombinant protein in seeds is compromised by low yield as compared to other heterologous expression systems. In order to improve the yield of the human epidermal growth factor (EGF) in barley, protein sink-source relations in the developing grain were modulated towards EGF instead of the barley storage protein.

View Article and Find Full Text PDF

MicroProteins are small, often single-domain proteins that are sequence-related to larger, often multidomain proteins. Here, we used a combination of comparative genomics and heterologous synthetic misexpression to isolate functional cereal microProtein regulators. Our approach identified LITTLE NINJA (LNJ), a microProtein that acts as a modulator of jasmonic acid (JA) signaling.

View Article and Find Full Text PDF

The major wheat domestication allele Q (encoding an APETALA2 like transcription factor) is responsible for the free threshing and square-headed spikes of modern wheat. Wild type q and null q' alleles cause a reversal to the speltoid phenotype. Q pleiotropically affects additional yield and quality traits so genetic variation in Q and its interaction partners remain important for crop improvement.

View Article and Find Full Text PDF

The simultaneous expression of AmRosea1 and AmDelila transcription factors from snapdragon can activate the anthocyanin pathway in orange carrots, leading to the synthesis and accumulation of anthocyanins in the taproots. Anthocyanins are phenolic compounds produced in various parts of plants. They are used as natural food dyes and are reported as beneficial antioxidants for humans.

View Article and Find Full Text PDF

New Breeding Techniques (NBTs) include several new technologies for introduction of new variation into crop plants for plant breeding, in particular the methods that aim to make targeted mutagenesis at specific sites in the plant genome (NBT mutagenesis). However, following that the French highest legislative body for administrative justice, the Conseil d'État, has sought advice from The Court of Justice of the European Union (CJEU) in interpreting the scope of the genetically modified organisms (GMO) Directive, CJEU in a decision from 2018, stated that organisms modified by these new techniques are not exempted from the current EU GMO legislation. The decision was based in a context of conventional plant breeding using mutagenesis of crop plants by physical or chemical treatments.

View Article and Find Full Text PDF