The present work describes a methodology to compute equivalent volumes representing the microstructure of 3D-printed continuous fiber-reinforced thermoplastics, based on a statistical characterization of the fiber distribution. In contrast to recent work, the methodology herein presented determines the statistically equivalent fiber distribution directly from cross-section micrographs, instead of generating random fiber arrangements. For this purpose, several regions, with different sizes and from different locations, are cropped from main cross-section micrographs and different spatial descriptor functions are adopted to characterize the microstructures in terms of agglomeration and periodicity of the fibers.
View Article and Find Full Text PDFThe present work expands the application of Puck and Schürmann Inter-Fiber Fracture criterion to fiber reinforced thermoplastic 3D-printed composite materials. The effect of the ratio between the transverse compressive strength and the in-plane shear strength is discussed and a new transition point between the fracture conditions under compressive loading is proposed. The recommended values of the inclination parameters, as well as their effects on the proposed method, are also discussed.
View Article and Find Full Text PDF