Improved long-wavelength transmission and supercontinuum (SC) generation is demonstrated by antireflective (AR) nanoimprinting and tapering of chalcogenide photonic crystal fibers (PCFs). Using a SC source input spanning from 1 to 4.2 μm, the total transmission of a 15 μm core diameter PCF was improved from ∼53% to ∼74% by nanoimprinting of AR structures on both input and output facets of the fiber.
View Article and Find Full Text PDFThe trade-off between the spectral bandwidth and average output power from chalcogenide fiber-based mid-infrared supercontinuum sources is one of the major challenges towards practical application of the technology. In this paper we address this challenge through tapering of large-mode-area chalcogenide photonic crystal fibers. Compared to previously reported step-index fiber tapers the photonic crystal fiber structure ensures single-mode propagation, which improves the beam quality and reduces losses in the taper due to higher-order mode stripping.
View Article and Find Full Text PDFA highly birefringent polarization-maintaining chalcogenide microstructured optical fiber (MOF) covering the 3-8.5 µm wavelength range has been realized for the first time. The fiber cross-section consists of 3 rings of circular air holes with 2 larger holes adjacent to the core.
View Article and Find Full Text PDFA low-loss suspended core As(38)Se(62) fiber with core diameter of 4.5 μm and a zero-dispersion wavelength of 3.5 μm was used for mid-infrared supercontinuum generation.
View Article and Find Full Text PDFAn original way to obtain fibers with special chromatic dispersion and single-mode behavior is to consider microstructured optical fibers (MOFs). These fibers present unique optical properties thanks to the high degree of freedom in the design of their geometrical structure. In this study, the first all-solid all-chalcogenide MOFs exhibiting photonic bandgap transmission have been achieved and optically characterized.
View Article and Find Full Text PDFWe theoretically demonstrate a novel approach for generating Mid-InfraRed SuperContinuum (MIR SC) by using concatenated fluoride and chalcogenide glass fibers pumped with a standard pulsed Thulium (Tm) laser (T(FWHM)=3.5ps, P0=20kW, ν(R)=30MHz, and P(avg)=2W). The fluoride fiber SC is generated in 10m of ZBLAN spanning the 0.
View Article and Find Full Text PDFWe report the fabrication of new dehydrated halo-tellurite glass fibers with low OH content (1ppm in weight) and low OH-induced attenuation of 10dB/m in 3-4 µm region. It shows halo-tellurite glass fibers a promising candidate for nonlinear applications in 2-5µm region.
View Article and Find Full Text PDFThe realization of an all-solid microstructured optical fiber based on chalcogenide glasses was achieved. The fiber presents As(2)S(3) inclusions selected as low refractive index material (n = 2.4) embedded in a As(38)Se(62) glass matrix (n = 2.
View Article and Find Full Text PDFA compact second-order Stokes Brillouin fiber laser made of microstructured chalcogenide fiber is reported for the first time. This laser required very low pump power for Stokes conversion: 6 mW for first order lasing and only 30 mW for second order lasing with nonresonant pumping. We also show linewidth-narrowing as well as intensity noise reduction for both the 1st and 2nd order Stokes component when compared to that of the pump source.
View Article and Find Full Text PDFWe report on all-optical wavelength conversion of a 56 Gb/s differential quadrature phase shift keying signal and a 42.7 Gb/s on-off keying signal. Wavelength conversion is based on four-wave mixing effect in a 1 m long highly nonlinear GeAsSe chalcogenide fiber.
View Article and Find Full Text PDFRelative intensity noise and frequency noise have been measured for the first time for a single-frequency Brillouin chalcogenide As38Se62 fiber laser. This is also the first demonstration of a compact suspended-core fiber Brillouin laser, which exhibits a low threshold power of 22 mW and a slope efficiency of 26% for nonresonant pumping.
View Article and Find Full Text PDFWe report a chalcogenide suspended-core fiber with ultra-high nonlinearity and low attenuation loss. The glass composition is As(38)Se(62).With a core diameter as small as 1.
View Article and Find Full Text PDFCascaded Raman wavelength shifting up to the fourth order ranging from 2092 to 2450 nm is demonstrated using a nanosecond pump at 1995 nm in a low-loss As(38)Se(62) suspended-core microstructured fiber. These four Stokes shifts are obtained with a low peak power of 11 W, and only 3 W are required to obtain three shifts. The Raman gain coefficient for the fiber is estimated to (1.
View Article and Find Full Text PDFThe aim of this paper is to present an overview of the recent achievements of our group in the fabrication and optical characterizations of As(2)S(3) microstructured optical fibers (MOFs). Firstly, we study the synthesis of high purity arsenic sulfide glasses. Then we describe the use of a versatile process using mechanical drilling for the preparation of preforms and then the drawing of MOFs including suspended core fibers.
View Article and Find Full Text PDFMicrostructured optical fibers (MOFs) are traditionally prepared using the stack and draw technique. In order to avoid the interfaces problems observed in chalcogenide glasses, we have developed a new casting method to prepare the chalcogenide preform. This method allows to reach optical losses around 0.
View Article and Find Full Text PDFWe report significant advances in the fabrication of low loss chalcogenide microstructured optical fiber (MOF). This new method, consisting in molding the glass in a silica cast made of capillaries and capillary guides, allows the development of various designs of fibers, such as suspended core, large core or small core MOFs. After removing the cast in a hydrofluoric acid bath, the preform is drawn and the design is controlled using a system applying differential pressure in the holes.
View Article and Find Full Text PDFWe report the fabrication and characterization of the first guiding chalcogenide As(2)S(3) microstructured optical fibers (MOFs) with a suspended core. At 1.55 microm, the measured losses are approximately 0.
View Article and Find Full Text PDFWe present the first fabrication, to the best of our knowledge, of chalcogenide microstructured optical fibers in Te-As-Se glass, their optical characterization, and numerical simulations in the middle infrared. In a first fiber, numerical simulations exhibit a single-mode behavior at 3.39 and 9.
View Article and Find Full Text PDFWe report several small-core chalcogenide microstructured fibers fabricated by the "Stack & Draw" technique from Ge(15)Sb(20)S(65) glass with regular profiles. Mode field diameters and losses have been measured at 1.55 microm.
View Article and Find Full Text PDFIn this work, we investigate the Brillouin and Raman scattering properties of a Ge15Sb20S65 chalcogenide glass microstructured single mode fiber around 1.55 microm. Through a fair comparison between a 2-m long chalcogenide fiber and a 7.
View Article and Find Full Text PDFWe report recent progress on fabrication of solid core microstructured fibers in chalcogenide glass. Several complex and regular holey fibers from Ga5Ge20Sb10S65 chalcogenide glass have been realized. We demonstrate that the "Stack & Draw" procedure is a powerful tool against crystallisation when used with a very stable chalcogenide glass.
View Article and Find Full Text PDF