There is a pressing global need to increase the use of renewable energy sources and limit greenhouse gas emissions. Towards this goal, highly efficient and molecularly selective chemical processes that operate under mild conditions are critical. Plasmonic photocatalysis uses optically-resonant metallic nanoparticles and their resulting plasmonic, electronic, and phononic light-matter interactions to drive chemical reactions.
View Article and Find Full Text PDFNanoparticle photocatalysts are essential to processes ranging from chemical production and water purification to air filtration and surgical instrument sterilization. Photochemical reactions are generally mediated by the illumination of metallic and/or semiconducting nanomaterials, which provide the necessary optical absorption, electronic band structure, and surface faceting to drive molecular reactions. However, with reaction efficiency and selectivity dictated by atomic and molecular interactions, imaging and controlling photochemistry at the atomic scale are necessary to both understand reaction mechanisms and to improve nanomaterials for next-generation catalysts.
View Article and Find Full Text PDF