Specific transcription factors regulate the totipotent and pluripotent capability of embryonic stem cells. Amongst these regulatory transcription factors in embryonic stem cells, Oct4 and Nanog are master factors that also have unique characteristic ability of cell-specific pluripotency and self-renewal. The expression of Nanog in fibroblasts confirms increased cell proliferation and transformation of foci-forming phenotype indicative of its oncogenic potential.
View Article and Find Full Text PDFIL-3 plays important roles in the growth and survival of hematopoietic progenitor cells, processes modeled in studies of the IL-3-dependent cell line Ba/F3. To gain insights into molecular mechanisms governing cell fate, we examined the patterns of proteins up-regulated following stimulation of Ba/F3 cells with IL-3. Through two-dimensional electrophoresis and proteomics-based approaches, we identified 11 proteins.
View Article and Find Full Text PDFUbiquitination and deubiquitination of post-translational modification play counter roles in determining the fate of protein function in eukaryotic system for maintaining the cellular homeostasis. Even though novel family members of growth-regulating deubiquitinating enzymes (DUB-1 and DUB-2) have been identified, their target proteins and functions are poorly understood. Dub genes encoding DUB-1 and DUB-2 are immediate-early genes and are induced in response to cytokine stimuli rapidly and transiently.
View Article and Find Full Text PDFMammalian homologues of the Lethal giant larvae (Lgl) tumor suppressor gene have been identified and these homologues can complement the yeast double mutant of Sop1 and Sop2, the yeast homologue of Lgl, as reported previously. In the absence of these genes in yeast, cellular viability is affected at restrictive temperature and salt environments. Members of this family contain five or more of the WD-40 repeat motifs, which is known to be involved in protein-protein interaction.
View Article and Find Full Text PDF