Publications by authors named "Brigitte Wdziekonski"

By endowing light control of neuronal activity, optogenetics and photopharmacology are powerful methods notably used to probe the transmission of pain signals. However, costs, animal handling and ethical issues have reduced their dissemination and routine use. Here we report LAKI (Light Activated K channel Inhibitor), a specific photoswitchable inhibitor of the pain-related two-pore-domain potassium TREK and TRESK channels.

View Article and Find Full Text PDF

Determination of what is the specificity of subunits composing a protein complex is essential when studying gene variants on human pathophysiology. The pore-forming α-subunit KCNQ1, which belongs to the voltage-gated ion channel superfamily, associates to its β-auxiliary subunit KCNE1 to generate the slow cardiac potassium I current, whose dysfunction leads to cardiac arrhythmia. Using pharmacology, gene invalidation, and single-molecule fluorescence assays, we found that KCNE1 fulfils all criteria of a bona fide auxiliary subunit of the TMEM16A chloride channel, which belongs to the anoctamin superfamily.

View Article and Find Full Text PDF

Migraine is a common, disabling neurological disorder with genetic, environmental and hormonal components and a prevalence estimated at ∼15%. Migraine episodes are notably related, among several factors, to electric hyperexcitability in sensory neurons. Their electrical activity is controlled by ion channels that generate current, specifically by the two-pore-domain potassium, K2P, channels, which inhibit electrical activity.

View Article and Find Full Text PDF

It is often unclear why some genetic mutations to a given gene contribute to neurological disorders and others do not. For instance, two mutations have previously been found to produce a dominant negative for TRESK, a two-pore-domain K+ channel implicated in migraine: TRESK-MT, a 2-bp frameshift mutation, and TRESK-C110R. Both mutants inhibit TRESK, but only TRESK-MT increases sensory neuron excitability and is linked to migraine.

View Article and Find Full Text PDF

Twik-related K(+) channel 1 (TREK1), TREK2, and Twik-related arachidonic-acid stimulated K(+) channel (TRAAK) form the TREK subfamily of two-pore-domain K(+) (K2P) channels. Despite sharing up to 78% sequence homology and overlapping expression profiles in the nervous system, these channels show major differences in their regulation by physiological stimuli. For instance, TREK1 is inhibited by external acidification, whereas TREK2 is activated.

View Article and Find Full Text PDF

The presence of brown adipose tissue (BAT) in human adults opens attractive perspectives to treat metabolic disorders. Indeed, BAT dissipates energy as heat via uncoupling protein (UCP)1. Brown adipocytes are located in specific deposits or can emerge among white fat through the so-called browning process.

View Article and Find Full Text PDF

Identification of molecular mechanisms involved in generation of different types of adipocytes is progressing substantially in mice. However, much less is known regarding characterization of brown (BAP) and white adipocyte progenitors (WAPs) in humans, highlighting the need for an in vitro model of human adipocyte development. Here, we report a procedure to selectively derive BAP and WAPs from human-induced pluripotent stem cells.

View Article and Find Full Text PDF

Human adipose-derived stem cell populations express cell surface markers such as CD105, CD73, CD146 and CD140a/PDFGRα. However, it was unclear whether these markers could discriminate subpopulations of undifferentiated cells and whether the expression of these markers is modulated during differentiation. To address this issue, we analysed the immunophenotype of cultured human multipotent adipose derived stem (hMADS) cell populations at different adipocyte differentiation steps.

View Article and Find Full Text PDF

Objective: The present study was undertaken to characterize the remodeling phenotype of human adipose tissue (AT) macrophages (ATM) and to analyze their paracrine effects on AT progenitor cells.

Research Design And Methods: The phenotype of ATM, immunoselected from subcutaneous (Sc) AT originating from subjects with wide range of body mass index and from paired biopsies of Sc and omental (Om) AT from obese subjects, was studied by gene expression analysis in the native and activated states. The paracrine effects of ScATM on the phenotype of human ScAT progenitor cells (CD34(+)CD31(-)) were investigated.

View Article and Find Full Text PDF

Adipose tissue is an alternative source of mesenchymal stem cells and human adipose-derived stem cells (ASCs) display an attractive and substantial therapeutic potential when transplanted in animal models. To this end, an understanding of ASC biology is necessary and the knowledge of mechanisms that maintain ASCs in an undifferentiated state with no loss of differentiation potential during ex vivo expansion represents a crucial step. However, these mechanisms remain to be identified because appropriate human cellular models are scant.

View Article and Find Full Text PDF

Background: In severe obesity, as well as in normal development, the growth of adipose tissue is the result of an increase in adipocyte size and numbers, which is underlain by the stimulation of adipogenic differentiation of precursor cells. A better knowledge of the pathways that regulate adipogenesis is therefore essential for an improved understanding of adipose tissue expansion. As microRNAs (miRNAs) have a critical role in many differentiation processes, our study aimed to identify the role of miRNA-mediated gene silencing in the regulation of adipogenic differentiation.

View Article and Find Full Text PDF

In this chapter, we describe a method to isolate and to expand multipotent adipose-derived stem (hMADS) cells from human adipose tissue. We also describe culture conditions to differentiate them into adipocytes at a high rate. This culture system provides a powerful means for studying the first steps of human adipose cell development and a route for investigating effects of drugs on the biology of adipocytes.

View Article and Find Full Text PDF
Article Synopsis
  • This study looks at how fat cells (adipocytes) are formed from mouse embryo stem cells and why it’s important during mouse development.
  • Researchers used advanced computer analysis to find new genes that help in the early steps of fat cell development.
  • They found that fat cell growth is connected to the growth of blood vessels and nerves, and they discovered many important genes that could help us understand obesity better.
View Article and Find Full Text PDF

Objective: Growth of white adipose tissue takes place in normal development and in obesity. A pool of adipose progenitors is responsible for the formation of new adipocytes and for the potential of this tissue to expand in response to chronic energy overload. However, factors controlling self-renewal of human adipose progenitors are largely unknown.

View Article and Find Full Text PDF

The differentiation of multipotent cells into undesirable lineages is a significant risk factor when performing cell therapy. In muscular diseases, myofiber loss can be associated with progressive fat accumulation that is one of the primary factors leading to decline of muscular strength. Therefore, to avoid any contribution of injected multipotent cells to fat deposition, we have searched for a highly myogenic but nonadipogenic muscle-derived cell population.

View Article and Find Full Text PDF

The one pot reaction of amino acids with diethylphosphite and formaldehyde yielded N,N-bis(phosphonomethyl)amino acids. This synthetic route does not require harsh reagents to cleave the ester group. The molecular structures of the new compounds were determined by X-ray diffraction methods.

View Article and Find Full Text PDF

Muscle disorders such as Duchenne muscular dystrophy (DMD) still need effective treatments, and mesenchymal stem cells (MSCs) may constitute an attractive cell therapy alternative because they are multipotent and accessible in adult tissues. We have previously shown that human multipotent adipose-derived stem (hMADS) cells were able to restore dystrophin expression in the mdx mouse. The goal of this work was to improve the myogenic potential of hMADS cells and assess the impact on muscle repair.

View Article and Find Full Text PDF

Key events leading to terminal differentiation of preadipocytes into adipocytes have been identified in recent years. However, signaling pathways involved in the decision of stem cells to follow the adipogenic lineage have not yet been characterized. We have previously shown that differentiating mouse embryonic stem (mES) cells give rise to functional adipocytes upon an early treatment with retinoic acid (RA).

View Article and Find Full Text PDF

Background: Multipotent stem cells exist within adipose tissue throughout life. An abnormal recruitment of these adipose precursor cells could participate to hyperplasia of adipose tissue observed in severe obesity or to hypoplasia of adipose tissue observed in lipodystrophy. Therefore, pharmacological molecules that control the pool of stem cells in adipose tissue are of great interest.

View Article and Find Full Text PDF

The authors describe protocols for culture conditions in which mouse ES cells can be maintained in an undifferentiated state or committed to undergo adipocyte differentiation at a high rate and in a highly reproducible fashion. There is also a protocol for maintaining and differentiating human adult stem cells, isolated form adipose tissue and from bone marrow, into adipocytes. These culture systems provide a powerful means for studying the first step of adipose cell development and a means to investigate effects of drugs on the biology of adipocytes.

View Article and Find Full Text PDF

Adipocytes and osteoblasts are derived from a common precursor cell. It has been proposed that the bone loss commonly seen during aging or in the pathology of osteoporosis might be partly caused by a deregulation of the normal balance between osteoblast and adipocyte differentiation. In vitro differentiation of mouse embryonic stem cells toward the adipogenic and the osteogenic lineages provides a powerful system for testing effects of compounds on the developmental switch between adipogenesis and osteogenesis and identification of pharmacological targets.

View Article and Find Full Text PDF

Here, we report the isolation of a human multipotent adipose-derived stem (hMADS) cell population from adipose tissue of young donors. hMADS cells display normal karyotype; have active telomerase; proliferate >200 population doublings; and differentiate into adipocytes, osteoblasts, and myoblasts. Flow cytometry analysis indicates that hMADS cells are CD44+, CD49b+, CD105+, CD90+, CD13+, Stro-1(-), CD34-, CD15-, CD117-, Flk-1(-), gly-A(-), CD133-, HLA-DR(-), and HLA-I(low).

View Article and Find Full Text PDF