Publications by authors named "Brigitte Poppenberger"

Plants have evolved specific temperature preferences, and shifts above this range cause heat stress with detrimental effects such as physiological disruptions, metabolic imbalances, and growth arrest. To reduce damage, plants utilize the heat shock response (HSR), signaling cascades that activate the heat shock factors (HSFs), transcription factors that control the heat stress-responsive transcriptome for activation of protective measures. While the core HSR is well-studied, we still know relatively little about heat stress perception and signal integration or cross-talk with other pathways.

View Article and Find Full Text PDF

Plant genomics plays a pivotal role in enhancing global food security and sustainability by offering innovative solutions for improving crop yield, disease resistance, and stress tolerance. As the number of sequenced genomes grows and the accuracy and contiguity of genome assemblies improve, structural annotation of plant genomes continues to be a significant challenge due to their large size, polyploidy, and rich repeat content. In this paper, we present an overview of the current landscape in crop genomics research, highlighting the diversity of genomic characteristics across various crop species.

View Article and Find Full Text PDF

Plants show remarkable developmental and regenerative plasticity through the sustained activity of stem cells in meristems. Under certain conditions, pluripotency can even be reestablished in cells that have already entered differentiation. Mutation of the putative carboxypeptidase ALTERED MERISTEM PROGRAM1 (AMP1) in Arabidopsis (Arabidopsis thaliana) causes a set of hypertrophic phenotypes, indicating a defect in the suppression of pluripotency.

View Article and Find Full Text PDF

Sunflower () is the second most important oil seed crop in Europe. The seeds are used as confection seeds and, more importantly, to generate an edible vegetable oil, which in normal varieties is rich in the polyunsaturated fatty acid linoleic acid. Linoleic acid is biosynthesized from oleic acid through activity of the oleate desaturase FATTY ACID DESATURASE 2 (FAD2), which in seeds is encoded by , a gene that's present in single copy in sunflowers.

View Article and Find Full Text PDF

Brassinosteroids (BRs) are required for various aspects of plant growth and development, but also participate in stress responses. The hormones convey their activity through transcriptional regulation and posttranslational modification of transcription factors and one class are basic helix-loop-helix (bHLH) proteins of the BR Enhanced Expression (BEE) subfamily, which in include BEE1-3 and CESTA (CES). CES and the BEEs promote the expression of different BR-responsive genes, including genes encoding gibberellin (GA) biosynthetic and catabolizing enzymes, as well as cold-responsive genes.

View Article and Find Full Text PDF

and are plant species native to Africa, but grow in most tropical and subtropical regions of the world. They are rich in vitamins, minerals, and essential oils and are traditional leafy vegetables and medicinal plants in Sub-Saharan Africa. The plants are still mainly collected from the wild but shall be taken into cultivation and an important aim in the domestication of these species is to improve traits that are relevant for crop production.

View Article and Find Full Text PDF

De novo shoot organogenesis is a prerequisite for numerous applications in plant research and breeding but is often a limiting factor, for example, in genome editing approaches. Class III homeodomain-leucine zipper (HD-ZIP III) transcription factors have been characterized as crucial regulators of shoot specification, however up-stream components controlling their activity during shoot regeneration are only partially identified. In a chemical genetic screen, we isolated ZIC2, a novel activator of HD-ZIP III activity.

View Article and Find Full Text PDF

Brassinosteroids (BRs) are plant steroids that have growth-promoting capacities, which are partly enabled by an ability to induce biosynthesis of gibberellins (GAs), a second class of plant hormones. In addition, BRs can also activate GA catabolism; here we show that in Arabidopsis (Arabidopsis thaliana) the basic helix-loop-helix transcription factor CESTA (CES) and its homologues BRASSINOSTEROID-ENHANCED EXPRESSION (BEE) 1 and 3 contribute to this activity. CES and the BEEs are BR-regulated at the transcriptional and posttranslational level and participate in different physiological processes, including vegetative and reproduction development, shade avoidance, and cold stress responses.

View Article and Find Full Text PDF

Heat stress is a major environmental stress type that can limit plant growth and development. To survive sudden temperature increases, plants utilize the heat shock response, an ancient signaling pathway. Initial results had suggested a role for brassinosteroids (BRs) in this response.

View Article and Find Full Text PDF

is an African orphan crop that is used as a leafy vegetable and medicinal plant. Although it is of high regional importance in Sub-Saharan Africa, the plant is still mainly collected from the wild and therefore efforts are made to promote its domestication. However, in addition to beneficial properties, there was first evidence that can accumulate the highly toxic pyrrolizidine alkaloid (PA) jacobine and here it was investigated, how jacobine production is controlled.

View Article and Find Full Text PDF

Brassinosteroids (BRs) are steroid hormones of plants that coordinate fundamental growth and development processes. Their homeostasis is controlled by diverse means, including glucosylation of the bioactive BR brassinolide (BL), which is catalyzed by the UDP-glycosyltransferases (UGTs) UGT73C5 and UGT73C6 and occurs mainly at the C-23 position. Additional evidence had suggested that the resultant BL-23-O-glucoside (BL-23-O-Glc) can be malonylated, but the physiological significance of and enzyme required for this reaction had remained unknown.

View Article and Find Full Text PDF

Cold stress is a significant environmental factor that negatively affects plant growth and development in particular when it occurs during the growth phase. Plants have evolved means to protect themselves from damage caused by chilling or freezing temperatures and some plant species, in particular those from temperate geographical zones, can increase their basal level of freezing tolerance in a process termed cold acclimation. Cold acclimation improves plant survival, but also represses growth, since it inhibits activity of the growth-promoting hormones gibberellins (GAs).

View Article and Find Full Text PDF

Higher plants can continuously form new organs by the sustained activity of pluripotent stem cells. These stem cells are embedded in meristems, where they produce descendants, which undergo cell proliferation and differentiation programs in a spatiotemporally-controlled manner. Under certain conditions, pluripotency can be reestablished in descending cells and this reversion in cell fate appears to be actively suppressed by the existing stem cell pool.

View Article and Find Full Text PDF

Previous research complemented with results on BIA1 enzymatic activities shows that the enzyme regulates brassinosteroid homeostasis via mono- and diacetylation of castasterone

View Article and Find Full Text PDF

Chemical inhibitors are invaluable tools for investigating protein function in reverse genetic approaches. Their application bears many advantages over mutant generation and characterization. Inhibitors can overcome functional redundancy, their application is not limited to species for which tools of molecular genetics are available and they can be applied to specific tissues or developmental stages, making them highly convenient for addressing biological questions.

View Article and Find Full Text PDF

Repetitive DNA sequences and some genes are epigenetically repressed by transcriptional gene silencing (TGS). When genetic mutants are not available or problematic to use, TGS can be suppressed by chemical inhibitors. However, informed use of epigenetic inhibitors is partially hampered by the absence of any systematic comparison.

View Article and Find Full Text PDF

Feeding experiments with stable isotopes are helpful tools for investigation of metabolic fluxes and biochemical pathways. For assessing nitrogen metabolism, the heavier nitrogen isotope, [N], has been frequently used. In plants, it is usually applied in form of [N]-nitrate, which is assimilated mainly in leaves.

View Article and Find Full Text PDF

A genomic segment on maize chromosome 7 influences carbon isotope composition, water use efficiency, and leaf growth sensitivity to drought, possibly by affecting stomatal properties. Climate change is expected to decrease water availability in many agricultural production areas around the globe. Therefore, plants with improved ability to grow under water deficit are urgently needed.

View Article and Find Full Text PDF

Cold stress is a significant threat for plant productivity and impacts on plant distribution and crop production, particularly so when it occurs during the growth phase. A developmental stage at risk is that of flowering, since a single stress event during sensitive stages, such as the full-bloom stage of fruit trees can be fatal for reproductive success. Although pollen development and fertilization are widely viewed as the most critical reproductive phases, the development and function of female reproductive tissues, which in Angiosperms are embedded in the gynoecium, are also affected by cold stress.

View Article and Find Full Text PDF

Sugar and organic acid contents are major factors for tomato fruit flavour and are important breeding traits. Here we provide an improved protocol for accurate quantification of the main sugars, glucose and fructose, and the organic acids, citric acid and malic acid, present in tomato. The tomato extract is spiked with lactose and tricarballylic acid as internal standards and loaded onto a NH2 solid phase extraction (SPE) column.

View Article and Find Full Text PDF

Glutamic and aspartic acid fulfil numerous functions in organisms. They are proteinogenic amino acids, they function as neurotransmitters, and glutamic acid links the citrate cycle with amino acid metabolism. In addition, glutamic acid is a precursor for many bioactive molecules like γ-aminobutyric acid (GABA).

View Article and Find Full Text PDF

The plant hormone abscisic acid (ABA) regulates many processes, including response to drought, seed dormancy and abscission of leaves and fruits. For maintenance of ABA homeostasis, catabolism of ABA by 8'-hydroxylation and subsequent cyclisation to phaseic acid (PA) is crucial. However, detection of ABA 8'-hydroxylation activity is tedious.

View Article and Find Full Text PDF

Plants in temperate climates utilize cold acclimation modes to improve frost tolerance during phases of active growth. Two papers in this issue of Developmental Cell (Li et al., 2017; Zhao et al.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionpjsknhdfpc7qc2c7rjh6edpplh43n659): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once