Immune checkpoint inhibitors (ICIs) targeting PD-(L)1 and CTLA-4 have revolutionized the systemic treatment of non-small cell lung cancer (NSCLC), achieving impressive results. However, long-term clinical benefits are only seen in a minority of patients. Extensive research is being conducted on novel potential immune checkpoints and the mechanisms underlying ICI resistance.
View Article and Find Full Text PDFThe introduction of immune checkpoint inhibitors significantly advanced outcomes in both metastatic and locally advanced non-small cell lung cancer. Despite these advancements, the 5-year survival rate remains suboptimal. Even in early-stage disease a significant portion of patients relapse and die from metastatic progression.
View Article and Find Full Text PDFAntibodies targeting the immune checkpoint molecules PD-1, PD-L1 and CTLA-4, administered alone or in combination with chemotherapy, are the standard of care in most patients with metastatic non-small-cell lung cancers. When given before curative surgery, tumor responses and improved event-free survival are achieved. New antibody combinations may be more efficacious and tolerable.
View Article and Find Full Text PDFIn addition to morphologic analysis, molecular diagnostic work up of Spitz tumours is often of great value for their accurate diagnosis/classification. Nowadays, next-generation sequencing (NGS) is the predominant screening method in molecular diagnostics. Up to 80% of these melanocytic neoplasms comprise gene fusions as genetic anomalies for which the driver codes for a protein harbouring a kinase domain.
View Article and Find Full Text PDFLung cancer remains the leading cause of cancer death worldwide, with the majority of cases diagnosed in an advanced stage. Early-stage disease non-small cell lung cancer (NSCLC) has a better outcome, nevertheless the 5-year survival rates drop from 60% for stage IIA to 36% for stage IIIA disease. Early detection and optimized perioperative systemic treatment are frontrunner strategies to reduce this burden.
View Article and Find Full Text PDFObjectives: Immune checkpoint inhibitors (ICIs) improved outcomes in non-small cell lung cancer (NSCLC) patients. We report the predictive utility of human leukocyte antigen class I (HLA-I) diversity and tumor mutational burden (TMB) by comprehensive next-generation sequencing.
Methods: 126 patients were included.
The use of targeted Next Generation Sequencing (NGS) for the diagnostic screening of somatic variants in solid tumor samples has proven its high clinical value. Because of the large number of ongoing clinical trials for a multitude of variants in a growing number of genes, as well as the detection of proven and emerging pan-cancer biomarkers including microsatellite instability (MSI) and tumor mutation burden (TMB), the currently employed diagnostic gene panels will become vastly insufficient in the near future. Here, we describe the validation and implementation of the hybrid capture-based comprehensive TruSight Oncology (TSO500) assay that is able to detect single-nucleotide variants (SNVs) and subtle deletions and insertions (indels) in 523 tumor-associated genes, copy-number variants (CNVs) of 69 genes, fusions with 55 cancer driver genes, and MSI and TMB.
View Article and Find Full Text PDFMultiple myeloma (MM), or Kahler's disease, is an incurable plasma cell (PC) cancer in the bone marrow (BM). This malignancy is preceded by one or more asymptomatic precursor conditions, monoclonal gammopathy of undetermined significance (MGUS) and/or smoldering multiple myeloma (SMM). The molecular mechanisms and exact cause of this progression are still not completely understood.
View Article and Find Full Text PDFBackground: Detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern associated with immune escape is important to safeguard vaccination efficacy. We describe the potential of delayed N gene amplification in the Allplex SARS-CoV-2 Assay (Seegene) for screening of the B.1.
View Article and Find Full Text PDFMultiple myeloma (MM) is consistently preceded by precursor conditions recognized clinically as monoclonal gammopathy of undetermined significance (MGUS) or smoldering myeloma (SMM). We interrogate the whole genome sequence (WGS) profile of 18 MGUS and compare them with those from 14 SMMs and 80 MMs. We show that cases with a non-progressing, clinically stable myeloma precursor condition (n = 15) are characterized by later initiation in the patient's life and by the absence of myeloma defining genomic events including: chromothripsis, templated insertions, mutations in driver genes, aneuploidy, and canonical APOBEC mutational activity.
View Article and Find Full Text PDFStratification of patients for targeted and immune-based therapies requires extensive genomic profiling that enables sensitive detection of clinically relevant variants and interrogation of biomarkers, such as tumor mutational burden (TMB) and microsatellite instability (MSI). Detection of single and multiple nucleotide variants, copy number variants, MSI, and TMB was evaluated using a commercially available next-generation sequencing panel containing 523 cancer-related genes (1.94 megabases).
View Article and Find Full Text PDFAnaplastic thyroid carcinoma (ATC) is a deadly disease with very limited therapeutic options. There is an urgent need for new and efficacious drugs. Unfortunately accrual in clinical trials is problematic because of the rarity of the disease and often poor performance status at diagnosis.
View Article and Find Full Text PDFEpidermal growth factor receptor (EGFR)-targeted therapy has become standard of care in advanced stages EGFR-mutant non-small cell lung cancer. Acquired resistance to first-line EGFR-tyrosine kinase inhibitor (TKI) and subsequent disease progression is a common problem and mostly due to a secondary mutation (T790M) in EGFR. We report a case of a patient with EGFR-mutated lung adenocarcinoma who developed a complex resistance profile: T790M mutation, HER2 mutation and HER2 amplification after first-line EGFR-TKI.
View Article and Find Full Text PDFLarge-scale tumor profiling studies have generated massive amounts of data that have been instrumental for the detection of recurrent driver mutations in many tumor types. These driver mutations as well as the concurrent passenger mutations are now being used for a more accurate diagnosis of the tumor and prognosis for the patient. Moreover, therapeutic inhibitors toward specific mutations are already on the market and many clinical trials are ongoing to approve novel therapeutic drugs.
View Article and Find Full Text PDFBiobanking is increasingly important in studying complex heterogeneous diseases. Therefore, it is essential to ensure the sample quality after long-term storage for reliable downstream analyses. The Clinical Biobank of the Jessa Hospital and the University Biobank Limburg (UBiLim) hold a continuously growing collection of hematological samples, including May-Grünwald-Giemsa (MGG)- and Perls' Prussian Blue (PPB)-stained bone marrow (BM) smears, stored at room temperature (RT) for up to 20 years.
View Article and Find Full Text PDFMultiple myeloma (MM), characterized by malignant plasma cells in the bone marrow, is consistently preceded by asymptomatic premalignant stage monoclonal gammopathy of undetermined significance (MGUS). These MGUS patients have an annual risk of 1% to progress to MM. Clinical, imaging, and genomic (genetic and epigenetic) factors were identified, whose presence increased the risk of progression from MGUS to MM.
View Article and Find Full Text PDFHigh-count monoclonal B cell lymphocytosis (MBL) with a chronic lymphocytic leukemia (CLL) phenotype is a well-known entity, featuring 1-4% annual risk of progression towards CLL requiring treatment. Lymphoma-like MBL (L-MBL), on the other hand, remains poorly defined and data regarding outcome are lacking. We retrospectively evaluated 33 L-MBL cases within our hospital population and compared them to 95 subjects with CLL-like MBL (C-MBL).
View Article and Find Full Text PDFThe inevitable switch from standard molecular methods to next-generation sequencing for the molecular profiling of tumors is challenging for most diagnostic laboratories. However, fixed validation criteria for diagnostic accreditation are not in place because of the great variability in methods and aims. Here, we describe the validation of a custom panel of hotspots in 24 genes for the detection of somatic mutations in non-small cell lung carcinoma, colorectal carcinoma and malignant melanoma starting from FFPE sections, using 14, 36 and 5 cases, respectively.
View Article and Find Full Text PDFThe transcription factor FOXP1 is implicated in the pathogenesis of B-cell lymphomas through chromosomal translocations involving either immunoglobulin heavy chain (IGH) locus or non-IG sequences. The former translocation, t(3;14)(p13;q32), results in dysregulated expression of FOXP1 juxtaposed with strong regulatory elements of IGH. Thus far, molecular consequences of rare non-IG aberrations of FOXP1 remain undetermined.
View Article and Find Full Text PDFThe European Myeloma Network has organized two workshops on fluorescence in situ hybridization in multiple myeloma. The first aimed to identify specific indications and consensus technical approaches of current practice. A second workshop followed a quality control exercise in which 21 laboratories analyzed diagnostic cases of purified plasma cells for recurrent abnormalities.
View Article and Find Full Text PDFAim: To investigate how t(11;18)(q21;q21)-positive gastrointestinal MALT lymphomas relate to other marginal zone lymphomas with respect to the somatic mutation pattern of the V(H) genes and the expression of the marker CD27.
Methods: The V(H) gene of 7 t(11;18)(q21;q21)-positive gastrointestinal MALT lymphomas was amplified by PCR using family specific V(H) primers and a consensus J(H) primer. PCR products were sequenced and mutation analysis of the CDR and the FR regions was performed.
Real-time polymerase chain reaction (PCR) is a frequently used technique in molecular diagnostics. To date, practical guidelines for the complete process of optimization and validation of commercial and in-house developed molecular diagnostic methods are scare. Therefore, we propose a practical guiding principle for the optimization and validation of real-time PCR assays.
View Article and Find Full Text PDFSeveral lines of evidences suggest that T cell/histiocyte-rich B-cell lymphoma (T/HRBCL) represents an aggressive variant of the clinically indolent entity nodular lymphocyte predominance Hodgkin's lymphoma (LPHL). Still, this view has not yet been supported by firm genetic evidence. In this study, we analyzed 17 T/HRBCL cases using comparative genomic hybridization (CGH) combined with microdissection of single CD20+ neoplastic cells and DNA amplification by degenerate oligonucleotide primed-polymerase chain reaction, an approach we previously used in LPHL.
View Article and Find Full Text PDFWe studied the genomic status of BCL6 in 23 cases of nodular lymphocyte predominance Hodgkin lymphoma (NLPHL) and 40 cases of classical Hodgkin lymphoma (cHL), using dual-color interphase fluorescence in situ hybridization (FISH). The BCL6 rearrangement was identified in 48% of NLPHL cases and was not detected in cHL cases. As a confirmation, sequential or simultaneous immunohistochemistry (IHC) and FISH using CD20 or BCL6 antibodies and BCL6 DNA probes was performed in 8 NLPHL cases.
View Article and Find Full Text PDF