Publications by authors named "Brigitte Le Magueresse Battistoni"

Melamine has several domestic and industrial uses as a flame retardant or in the manufacture of melamine-formaldehyde resins. Based on available scientific literature data, the French Agency for Food, Environmental and Occupational Health & Safety (ANSES) included this substance in the list of "chemicals that may present endocrine disruptor (ED) properties", and the substance was prioritized to assess whether it should be classified as an ED in European Union (EU) regulations for hazard identification. This review reports the assessment of melamine based on relevant studies from the registration dossier under REACH, and peer-reviewed literature.

View Article and Find Full Text PDF

This review provides an overview of the assessment of the endocrine disrupting (ED) properties of carbon disulfide (CS), following the methodology used at the European level to identify endocrine disruptors. Relevant in vitro, in vivo studies and human data are analyzed. The assessment presented here focuses on one endocrine activity, i.

View Article and Find Full Text PDF

The close structural analogy of bisphenol (BP) S with BPA, a recognized endocrine-disrupting chemical and a substance of very high concern in the European Union, highlights the need to assess the extent of similarities between the two compounds and carefully scrutinize BPS potential toxicity for human health. This analysis aimed to investigate human health toxicity data regarding BPS, to find a point of departure for the derivation of human guidance values. A systematic and transparent methodology was applied to determine whether European or international reference values have been established for BPS.

View Article and Find Full Text PDF

The PD-L1/PD-1 immune checkpoint axis is the strongest T cell exhaustion inducer. As immune dysfunction occurs during obesity, we analyzed the impact of obesity on PD-L1/PD-1 expression in white adipose tissue (WAT) in mice and in human white adipocytes. We found that PD-L1 was overexpressed in WAT of diet-induced obese mice and was associated with increased expression of PD-1 in visceral but not subcutaneous WAT.

View Article and Find Full Text PDF

Postmenopausal women represent a vulnerable population towards endocrine disruptors due to hormonal deficit. We previously demonstrated that chronic exposure of ovariectomized C57Bl6/J mice fed a high-fat, high-sucrose diet to a low-dose mixture of chemicals with one dioxin, one polychlorobiphenyl, one phthalate, and bisphenol A triggered metabolic alterations in the liver but the intestine was not explored. Yet, the gastrointestinal tract is the main route by which pollutants enter the body.

View Article and Find Full Text PDF

Endocrine disrupting chemicals (EDCs) are linked to the worldwide epidemic incidence of metabolic disorders and fatty liver diseases, which affects quality of life and represents a high economic cost to society. Energy homeostasis exhibits strong sexual dimorphic traits, and metabolic organs respond to EDCs depending on sex, such as the liver, which orchestrates both drug elimination and glucose and lipid metabolism. In addition, fatty liver diseases show a strong sexual bias, which in part could also originate from sex differences observed in gut microbiota.

View Article and Find Full Text PDF

Obesity and metabolic-related diseases, among which diabetes, are prominent public health challenges of the 21st century. It is now well acknowledged that pollutants are a part of the equation, especially endocrine-disrupting chemicals (EDCs) that interfere with the hormonal aspect. The aim of the review is to focus on adipose tissue, a central regulator of energy balance and metabolic homeostasis, and to highlight the significant differences in the endocrine and metabolic aspects of adipose tissue between males and females which likely underlie the differences of the response to exposure to EDCs between the sexes.

View Article and Find Full Text PDF

Environmental pollutants suspected of disrupting the endocrine system are considered etiologic factors in the epidemic of metabolic disorders. As regulation of energy metabolism relies on the integrated action of a large number of hormones, we hypothesized that certain chemicals could trigger changes in glucocorticoid signaling. To this end, we exposed C57Bl6/J female and male mice between 5 and 20 weeks of age to a mixture of 2,3,7,8- tetrachlorodibenzo-p-dioxin (20 pg/kg body weight/day [bw/d]), polychlorobiphenyl 153 (200 ng/kg bw/d), di-[2-ethylhexyl]-phthalate (500 μg/kg bw/d) and bisphenol A (40 μg/kg bw/d).

View Article and Find Full Text PDF

Postmenopausal women may be at particular risk when exposed to chemicals especially endocrine disruptors because of hormonal deficit. To get more insight, ovariectomized C57Bl6/J mice fed a high-fat high-sucrose diet were chronically exposed from 5 to 20 weeks of age to a low-dose mixture of chemicals with one dioxin, one polychlorobiphenyl, one phthalate and bisphenol A. Part of the mice received as well E2 implants to explore the potential estrogenic dependency of the metabolic alterations.

View Article and Find Full Text PDF

Excessive consumption of industrialized food and beverages is a major etiologic factor in the epidemics of obesity and associated metabolic diseases because these products are rich in fat and sugar. In addition, they contain food contact materials and environmental pollutants identified as metabolism disrupting chemicals. To evaluate the metabolic impact of these dietary threats (individually or combined), we used a male mouse model of chronic exposure to a mixture of low-dose archetypal food-contaminating chemicals that was added in standard or high-fat, high-sucrose (HFHS) diet.

View Article and Find Full Text PDF
Article Synopsis
  • Obesity and diabetes are rising at alarming rates globally, posing significant health risks and economic burdens due to their links to diseases like cardiovascular issues and type 2 diabetes.
  • Environmental exposure to multiple man-made chemical pollutants is contributing to these health problems, yet current risk assessments only evaluate chemicals one at a time.
  • The "cocktail effect" shows that low levels of multiple chemicals, especially endocrine disruptors, can lead to unexpected metabolic disturbances, highlighting the need to revise risk assessment protocols for better public health protection.
View Article and Find Full Text PDF

Based on rodent studies after prenatal and/or perinatal or adult exposure, there is now evidence that BPA may increase metabolic disturbances eventually leading to type-2 diabetes development via an ED MoA. In particular, BPA has been shown to alter insulin synthesis and/or release by pancreatic β-cells, and insulin signaling within insulin-sensitive organs (i.e.

View Article and Find Full Text PDF

BPA is one of the most investigated substances for its endocrine disruptor (ED) properties and it is at the same time in the center of many ED-related controversies. The analysis on how BPA fits to the regulatory identification as an ED is a challenge in terms of methodology. It is also a great opportunity to test the regulatory framework with a uniquely data-rich substance and learn valuable lessons for future cases.

View Article and Find Full Text PDF

We recently hypothesized that a mixture of low-dosed dioxin, polychlorobiphenyl, phthalate and bisphenol may induce estrogeno-mimetic activities in a model of lifelong-exposed female mice. Herein, we evaluated the impact of this mixture in estrogen deficiency conditions. Based on the protective effects of estrogens against metabolic disorders, we reasoned that exposure to pollutants should attenuate the deleterious metabolic effects induced by ovariectomy.

View Article and Find Full Text PDF

Obesity and associated metabolic disorders represent a major societal challenge in health and quality of life with large psychological consequences in addition to physical disabilities. They are also one of the leading causes of morbidity and mortality. Although, different etiologic factors including excessive food intake and reduced physical activity have been well identified, they cannot explain the kinetics of epidemic evolution of obesity and diabetes with prevalence rates reaching pandemic proportions.

View Article and Find Full Text PDF

Environmental pollutants are potential etiologic factors of obesity and diabetes that reach epidemic proportions worldwide. However, it is important to determine if pollutants could exert metabolic defects without directly inducing obesity. The metabolic disturbances triggered in nonobese mice lifelong exposed to a mixture of low-dose pollutants (2,3,7,8-tetrachlorodibenzo-p-dioxine, polychlorinated biphenyl 153, diethylhexyl-phthalate, and bisphenol A) were compared with changes provoked by a high-fat high-sucrose (HFHS) diet not containing the pollutant mixture.

View Article and Find Full Text PDF

Obesity is a major public health problem because it is a risk factor for metabolic disorders including type 2 diabetes and cardiovascular disorders. Notably, pollutants endowed with endocrine disrupting activities have been charged to contribute to the etiology of obesity and type 2 diabetes, especially if exposure occurs during the early life shown to be a highly vulnerable window of time. An overview on endocrine disrupters in relation with the obesogen and metabolic disruption hypothesis is presented.

View Article and Find Full Text PDF

Pollutants are suspected to contribute to the etiology of obesity and related metabolic disorders. Apart from occupational exposure which concerns a subset of chemicals, humans are mostly exposed to a large variety of chemicals, all life-long and at low doses. Food ingestion is a major route of exposure and it is suggested that pollutants have a worsened impact when combined with a high-fat diet.

View Article and Find Full Text PDF

Environmental contaminants are suspected to be involved in the epidemic incidence of metabolic disorders, food ingestion being a primarily route of exposure. We hypothesized that life-long consumption of a high-fat diet that contains low doses of pollutants will aggravate metabolic disorders induced by obesity itself. Mice were challenged from preconception throughout life with a high-fat diet containing pollutants commonly present in food (2,3,7,8-tetrachlorodibenzo-p-dioxin, polychlorinated biphenyl 153, diethylhexyl phthalate, and bisphenol A), added at low doses in the tolerable daily intake range.

View Article and Find Full Text PDF
Article Synopsis
  • Dioxins, specifically TCDD, disrupt endocrine systems and can lead to reproductive and developmental issues, prompting this study's focus on its effects on male and female rat offspring exposed in utero.
  • A low dose of TCDD was administered to pregnant rats, and the gene expression in the offspring's gonads was analyzed using microarray techniques, revealing that only a small fraction of genes were altered by TCDD exposure, specifically affecting 113 genes in ovaries and 56 in testes.
  • The study found that the response to TCDD varied between male and female gonads, with some genes linked to detoxification pathways being activated in ovaries but not testes, alongside evidence of inflammatory pathways being influenced by TCDD exposure.
View Article and Find Full Text PDF

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and related substances are ubiquitous environmental pollutants that exert adverse effects on reproductive processes. In testis, Leydig cells which produce testosterone are under hormonal and local control exerted by cytokines including TNFα. Using mouse Leydig primary cell cultures as a model, we studied the effects of TCDD on the steroidogenic outcome of Leydig cells and the gene expression levels of Ccl5 and Cxcl4, previously shown to be target genes of TCDD in testis.

View Article and Find Full Text PDF

Background: Dietary interventions are critical in the prevention of metabolic diseases. Yet, the effects of fatty fish consumption on type 2 diabetes remain unclear. The aim of this study was to investigate whether a diet containing farmed salmon prevents or contributes to insulin resistance in mice.

View Article and Find Full Text PDF

The testis is a heterogeneous organ that comprises a number of cell types, including germ cells at -different stages in their maturation, differentiated neighbor nursing cells, and endocrine somatic cells. Despite such cellular heterogeneity the testis is highly organized, with germ cell development and differentiation being compartmentalized into the interconnected tubular network of the seminiferous epithelium. Intratesticular scaffolds rely heavily on the basement membrane of the seminiferous tubules while germ cell development inside the seminiferous epithelium is critically dependent on the Blood Testis Barrier (BTB).

View Article and Find Full Text PDF