Although macula densa (MD) cells are chief regulatory cells in the nephron with unique microanatomical features, they have been difficult to study in full detail due to their inaccessibility and limitations in earlier microscopy techniques. The present study used a new mouse model with a comprehensive imaging approach to visualize so far unexplored microanatomical features of MD cells, their regulation, and functional relevance. MD-GFP mice with conditional and partial induction of green fluorescent protein (GFP) expression, which specifically and intensely illuminated only single MD cells, were used with fluorescence microscopy of fixed tissue and live MD cells in vitro and in vivo with complementary electron microscopy of the rat, rabbit, and human kidney.
View Article and Find Full Text PDFChronic kidney disease at a certain advanced stage inevitably progresses to end stage renal failure characterized by the progressing loss of nephrons accompanied by the increasing appearance of fibrotic tissue, called renal fibrosis. The urgent question is whether renal fibrosis is a response to injury or if fibrosis acquires a self-sustaining progressive potential that actively contributes to the deterioration of the kidney. The present review distinguishes between renal fibrosis subsequent to a glomerular injury and fibrosis subsequent to a primary tubular injury.
View Article and Find Full Text PDFThe uriniferous tubule is divided into the proximal tubule, the intermediate (thin) tubule, the distal tubule and the collecting duct. The present chapter is based on the chapters by Maunsbach and Christensen on the proximal tubule, and by Kaissling and Kriz on the distal tubule and collecting duct in the 1992 edition of the Handbook of Physiology, Renal Physiology. It describes the fine structure (light and electron microscopy) of the entire mammalian uriniferous tubule, mainly in rats, mice, and rabbits.
View Article and Find Full Text PDFThe renal collecting duct adapts to changes in acid-base metabolism by remodelling and altering the relative number of acid or alkali secreting cells, a phenomenon termed plasticity. Acid secretory A intercalated cells (A-IC) express apical H(+)-ATPases and basolateral bicarbonate exchanger AE1 whereas bicarbonate secretory B intercalated cells (B-IC) express basolateral (and apical) H(+)-ATPases and the apical bicarbonate exchanger pendrin. Intercalated cells were thought to be terminally differentiated and unable to proliferate.
View Article and Find Full Text PDFJ Clin Invest
February 2011
Epithelial-mesenchymal transition (EMT) has become widely accepted as a mechanism by which injured renal tubular cells transform into mesenchymal cells that contribute to the development of fibrosis in chronic renal failure. However, an increasing number of studies raise doubts about the existence of this process in vivo. Herein, we review and summarize both sides of this debate, but it is our view that unequivocal evidence supporting EMT as an in vivo process in kidney fibrosis is lacking.
View Article and Find Full Text PDFWe recently showed in a tetracycline-controlled transgenic mouse model that overexpression of transforming growth factor (TGF)-beta1 in renal tubules induces widespread peritubular fibrosis and focal degeneration of nephrons. In the present study we have analyzed the mechanisms underlying these phenomena. The initial response to tubular cell-derived TGF-beta1 consisted of a robust proliferation of peritubular cells and deposition of collagen.
View Article and Find Full Text PDFRenal phosphate reabsorption across the brush border membrane (BBM) in the proximal tubule is mediated by at least three transporters, NaPi-IIa (SLC34A1), NaPi-IIc (SLC34A3), and Pit-2 (SLC20A2). Parathyroid hormone (PTH) is a potent phosphaturic factor exerting an acute and chronic reduction in proximal tubule phosphate reabsorption. PTH acutely induces NaPi-IIa internalization from the BBM and lysosomal degradation, but its effects on NaPi-IIc and Pit-2 are unknown.
View Article and Find Full Text PDFThe role of vascular endothelial growth factor (VEGF) in renal fibrosis, tubular cyst formation, and glomerular diseases is incompletely understood. We studied a new conditional transgenic mouse system [Pax8-rtTA/(tetO)(7)VEGF], which allows increased tubular VEGF production in adult mice. The following pathology was observed.
View Article and Find Full Text PDFHistochem Cell Biol
August 2008
The renal interstitial compartment, situated between basement membranes of epithelia and vessels, contains two contiguous cellular networks. One network is formed by interstitial fibroblasts, the second one by dendritic cells. Both are in intimate contact with each other.
View Article and Find Full Text PDFBackground: The pronephros, the simplest form of a vertebrate excretory organ, has recently become an important model of vertebrate kidney organogenesis. Here, we elucidated the nephron organization of the Xenopus pronephros and determined the similarities in segmentation with the metanephros, the adult kidney of mammals.
Results: We performed large-scale gene expression mapping of terminal differentiation markers to identify gene expression patterns that define distinct domains of the pronephric kidney.
Tubulo-interstitial fibrosis is a constant feature of chronic renal failure and it is suspected to contribute importantly to the deterioration of renal function. In the fibrotic kidney there exists, besides normal fibroblasts, a large population of myofibroblasts, which are supposedly responsible for the increased production of intercellular matrix. It has been proposed that myofibroblasts in chronic renal failure originate from the transformation of tubular cells via epithelial-mesenchymal transition (EMT) or from infiltration by bone marrow-derived precursors.
View Article and Find Full Text PDFWe investigated the proliferative capacity of renal proximal tubular cells in healthy rats. Previously, we observed that tubular cells originate from differentiated cells. We now found 1) by application of bromo-deoxyuridine (BrdU) for 14 days and costaining for BrdU, and the G(1)-phase marker cyclin D1 that the bulk of cells in the S3 segment of juvenile rats were involved in proliferation; 2) that although the proliferation rate was about 10-fold higher in juvenile rats compared with adult rats, roughly 40% of S3 cells were in G(1) in both groups; 3) that after a strong mitotic stimulus (lead acetate), proliferation was similar in juveniles and adults; 4) that there was a high incidence of cyclin D1-positive cells also in the healthy human kidney; and 5) by labeling dividing cells with BrdU for 2 days before the application of lead acetate and subsequent costaining for BrdU and cell cycle markers, that, although a strong mitotic stimulus does not abolish the period of quiescence following division, it shortens it markedly.
View Article and Find Full Text PDFThe renal collecting system (CS) is composed of segment-specific (SS) and intercalated (IC) cells. The latter comprise at least two subtypes (type A and non-type A IC). The origin and maintenance of cellular heterogeneity in the CS is unclear.
View Article and Find Full Text PDFDuring a study on the mTor pathway in the rat kidney we observed a striking increase of the phosphorylation of the S6 kinase in mitosis. In cryostat sections of perfusion-fixed tissue mitotic cells appeared as bright spots in immunofluorescence using an antibody specific for the phosphorylation site Thr421/Ser424. They were easily spotted in overviews with the objective 4x and 10x.
View Article and Find Full Text PDFPhosphate reabsorption in the renal proximal tubule occurs mostly via the type IIa Na(+)-phosphate cotransporter (NaP(i)-IIa) in the brush border membrane (BBM). The activity and localization of NaP(i)-IIa are regulated, among other factors, by parathyroid hormone (PTH). NaP(i)-IIa interacts in vitro via its last three COOH-terminal amino acids with the PDZ protein Na(+)/H(+)-exchanger isoform 3 regulatory factor (NHERF)-1 (NHERF1).
View Article and Find Full Text PDFWe searched for evidence for a contribution of stem cells in growth of the proximal S3 segments of healthy rats. According to the stem cell model, stem cells are undifferentiated and slow cycling; the bulk of cycling cells are transit amplifying, rapidly cycling cells. We show the following.
View Article and Find Full Text PDFThe role of dendritic cells (DC) in urinary tract infections (UTI) is unknown. These cells contribute directly to the innate defense against various viral and bacterial infections. Here, we studied their role in UTI using an experimental model induced by transurethral instillation of the uropathogenic Escherichia coli (UPEC) strain 536 into C57BL/6 mice.
View Article and Find Full Text PDFWe searched for morphological evidence to support the hypothesis that stem cells are responsible for renal tubular cell proliferation. The rationale of the study was that if proliferation relies on progenitors, mitotically active cells should be less differentiated than their neighbors. As the retention of the thymidine analog BrdU has been the only approach employed to identify stem cells in the kidney up to now we additionally characterized BrdU-retaining cells.
View Article and Find Full Text PDFRenal distribution and function of TWIK-1, a member of the two-pore-domain potassium channel family, was studied in mouse kidney. TWIK-1 is expressed in apical and subapical localizations of proximal tubule and cytoplasmic sites of thin and thick ascending limbs, distal convoluted tubules and medullary collecting duct. Studies in mice lacking intact TWIK-1 (twik-1 -/-) and wild-type mice (twik-1 +/+) revealed an attenuated ability to increase renal phosphate (Pi) reabsorption and stabilize plasma Pi concentration in response to a low Pi diet in twik-1 -/- mice.
View Article and Find Full Text PDFFibrosis is considered as a central factor in the loss of renal function in chronic kidney diseases. The origin of fibroblasts and myofibroblasts that accumulate in the interstitium of the diseased kidney is still a matter of debate. It has been shown that accumulation of myofibroblasts in inflamed and fibrotic kidneys is associated with upregulation of fibroblast-specific protein 1 (FSP1, S100A4), not only in the renal interstitium but also in the injured renal epithelia.
View Article and Find Full Text PDFWe describe a new methodology, based on terminal perfusion of rodents with a reactive ester derivative of biotin that enables the covalent modification of proteins readily accessible from the bloodstream. Biotinylated proteins from total organ extracts can be purified on streptavidin resin in the presence of strong detergents, digested on the resin and subjected to liquid chromatography-tandem mass spectrometry for identification. In the present study, in vivo biotinylation procedure led to the identification of hundreds of proteins in different mouse organs, including some showing a restricted pattern of expression in certain body tissues.
View Article and Find Full Text PDFThe Na(+)/phosphate cotransporter NaPi-IIa (SLC34A1) is the major transporter mediating the reabsorption of P(i) in the proximal tubule. Expression and activity of NaPi-IIa is regulated by several factors, including parathyroid hormone, dopamine, metabolic acidosis, and dietary P(i) intake. Dopamine induces natriuresis and phosphaturia in vivo, and its actions on several Na(+)-transporting systems such as NHE3 and Na(+)-K(+)-ATPase have been investigated in detail.
View Article and Find Full Text PDFInorganic phosphate (P(i)) is reabsorbed in the renal proximal tubule mainly via the type-IIa sodium-phosphate cotransporter (NaPi-IIa). This protein is regulated tightly by different factors, among them dietary P(i) intake and parathyroid hormone (PTH). A number of PDZ-domain-containing proteins have been shown to interact with NaPi-IIa in vitro, such as Na(+)/H(+) exchanger-3 regulatory factor-1 (NHERF1) and PDZK1.
View Article and Find Full Text PDF