Already for some decades lateral flow assays (LFAs) are 'common use' devices in our daily life. Also, for forensic use LFAs are developed, such as for the analysis of illicit drugs and DNA, but also for the detection of explosives and body fluid identification. Despite their advantages, including ease-of-use, LFAs are not yet frequently applied at a crime scene.
View Article and Find Full Text PDFRecently a hand-held, carbon-nanotube-based electronic nose became available on the market. Such an electronic nose could be interesting for applications in the food industry, health monitoring, environmental monitoring, and security services. However, not much is known about the performance of such an electronic nose.
View Article and Find Full Text PDFThis systematic review describes and discusses three commercially available integrated systems for forensic DNA analysis, i.e., ParaDNA, RapidHIT, and ANDE.
View Article and Find Full Text PDFSince the start of the COVID-19 pandemic, 10 manufacturers of molecular tests for SARS-CoV-2 have received Emergency Use Authorizations from the U.S. Food and Drug Administration for point-of-care or over the counter use.
View Article and Find Full Text PDFMicrofluidic devices offer important benefits for forensic applications, in particular for fast tests at a crime scene. A large portion of forensic applications require microfluidic chip material to show compatibility with biochemical reactions (such as amplification reactions), and to have high transparency in the visible region and high chemical resistance. Also, preferably, manufacturing should be simple.
View Article and Find Full Text PDFDNA sequencing, starting with Sanger's chain termination method in 1977 and evolving into the next generation sequencing (NGS) techniques of today that employ massively parallel sequencing (MPS), has become essential in application areas such as biotechnology, virology, and medical diagnostics. Reflected by the growing number of articles published over the last 2-3 years, these techniques have also gained attention in the forensic field. This review contains a brief description of first, second, and third generation sequencing techniques, and focuses on the recent developments in human DNA analysis applicable in the forensic field.
View Article and Find Full Text PDFThe extraction and recovery efficiency of swabs used to collect evidence at crime scenes is relatively low (typically <50%) for bacterial spores and body fluids. Cell-free deoxyribonucleic acid (DNA) is an interesting alternative compared to whole cells as a source for forensic analysis, but extraction and recovery from swabs has not been tested before using pure DNA. In this study cotton, foam, nylon flocked, polyester and rayon swabs are investigated in order to collect pure DNA isolated from saliva samples.
View Article and Find Full Text PDFThis article describes data related to a research article entitled "Fluorescent cyanine dyes for the quantification of low amounts of dsDNA" (B. Bruijns, R. Tiggelaar, J.
View Article and Find Full Text PDFMicrofluidic devices may offer various advantages for forensic DNA analysis, such as reduced risk of contamination, shorter analysis time and direct application at the crime scene. Microfluidic chip technology has already proven to be functional and effective within medical applications, such as for point-of-care use. In the forensic field, one may expect microfluidic technology to become particularly relevant for the analysis of biological traces containing human DNA.
View Article and Find Full Text PDF