Publications by authors named "Brigitta Kleessen"

We explored whether bifidobacteria and lactobacilli numbers and other selected bacteria in the upper intestine and the caecum of growing pigs were affected by diet and intake of inulin. Starting at two weeks after weaning (28 d) 72 pigs were fed two types of diets (wheat/barley (WB) or maize/gluten (MG)), without or with 3% inulin (WB + I, MG + I) for three and six weeks. Intestinal bacteria were quantified by fluorescence-in-situ-hybridization (n = 8/group).

View Article and Find Full Text PDF

A study was conducted to test the effects of Jerusalem artichoke inulin (JA) or chicory inulin (CH) in snack bars on composition of faecal microbiota, concentration of faecal SCFA, bowel habit and gastrointestinal symptoms. Forty-five volunteers participated in a double-blind, randomized, placebo-controlled, parallel-group study. At the end of a 7 d run-in period, subjects were randomly assigned to three groups of fifteen subjects each, consuming either snack bars with CH or JA, or snack bars without fructans (placebo); for 7 d (adaptation period), they ingested one snack bar per day (7.

View Article and Find Full Text PDF

Inulin stimulates intestinal bifidobacteria in humans and rodents but its effect in pigs is inconsistent. We assessed the effect of inulin on the intestinal microbiota by fluorescent in situ hybridization in growing pigs (age 9-12 wk). Pigs (n = 64) were assigned to 2 types of basal diets [wheat and barley (WB) or corn and wheat gluten (CG)] with or without 3% inulin (WBI or CGI) for 3 and 6 wk (n = 8/group) to test whether naturally occurring dietary fibers influence the inulin effect.

View Article and Find Full Text PDF

Purpose: High-altitude exposure is often associated with gastrointestinal disorders, inflammation, and an increased risk of infection. We suspected microbial and immunological responses to high-altitude exposure in mountaineers resulting from changes in the balance of the intestinal microflora.

Methods: We investigated fecal samples and serum of seven mountaineers who took part in a 47-d German expedition to the Nepalese Himalayas in 2002, for microbial response by changes in different fecal bacterial population groups (fluorescent in situ hybridization), immune response by serum levels of IgG-, IgM-, and IgA anti-LPS (E.

View Article and Find Full Text PDF

Non-digestible inulin-type fructans, such as oligofructose and high-molecular-weight inulin, have been shown to have the ability to alter the intestinal microbiota composition in such a way that members of the microbial community, generally considered as health-promoting, are stimulated. Bifidobacteria and lactobacilli are the most frequently targeted organisms. Less information exists on effects of inulin-type fructans on the composition, metabolism and health-related significance of bacteria at or near the mucosa surface or in the mucus layer forming mucosa-associated biofilms.

View Article and Find Full Text PDF

Control of intestinal pathogens during the earliest phases of broiler production may be the best strategy for the reduction of human pathogens on processed broiler carcasses. The recent ban on antibiotics in poultry feed has served to focus much attention on alternative methods of controlling the gastrointestinal microflora. A field trial was conducted to evaluate the effect of the fructan-rich Jerusalem artichoke, or topinambur (administered as 0.

View Article and Find Full Text PDF

The effects of fructans in the diet on the mucosal morphometry (height of villi, depth of the crypts, number of goblet cells), the thickness of the epithelial mucus layer and the histochemical composition of intestinal mucosubstances in the distal jejunum and the distal colon were investigated by comparing germ-free (GF) rats, rats harbouring Bacteroides vulgatus and Bifidobacterium longum (diassociated (DA) rats), and rats with a human faecal flora (HFA). The rats were fed either a commercial standard diet (ST) or ST + (50 g oligofructose (OF)-long-chain inulin (lcIN))/kg. Changes in total bacteria, bifidobacteria and Bacteroides-Prevotella in response to feeding these diets were investigated by fluorescent in situ hybridization with 16S rRNA-targeted probes both in intestinal contents (lumen bacteria) and tissue sections (mucosa-associated bacteria).

View Article and Find Full Text PDF