Aims: The Z-disc is a crucial structure of the sarcomere and is implicated in mechanosensation/transduction. Dysregulation of Z-disc proteins often result in cardiomyopathy. We have previously shown that the Z-disc protein Cytoskeletal Heart-enriched Actin-associated Protein (CHAP) is essential for cardiac and skeletal muscle development.
View Article and Find Full Text PDFObjective: In search of molecular imaging modalities for specific detection of inflammatory atherosclerotic plaques, we explored the potential of targeting scavenger receptor-AI (SR-AI), which is highly expressed by lesional macrophages and linked to effective internalization machinery.
Approach And Results: Ultrasmall superparamagnetic iron oxide particles were conjugated to a peptidic SR-AI ligand (0.371 mol Fe/L and 0.
Haemodynamic factors influence all forms of vascular growth (vasculogenesis, angiogenesis, arteriogenesis). Because of its prominent role in atherosclerosis, shear stress has gained particular attention, but other factors such as circumferential stretch are equally important to maintain the integrity and to (re)model the vascular network. While these haemodynamic forces are crucial determinants of the appearance and the structure of the vasculature, they are in turn subjected to structural changes in the blood vessels, such as an increased arterial stiffness in chronic arterial hypertension and ageing.
View Article and Find Full Text PDFBackground: High-resolution contrast-enhanced imaging of the murine atherosclerotic vessel wall is difficult due to unpredictable flow artifacts, motion of the thin artery wall and problems with flow suppression in the presence of a circulating contrast agent.
Methods And Results: We applied a 2D-FLASH retrospective-gated CINE MRI method at 9.4T to characterize atherosclerotic plaques and vessel wall distensibility in the aortic arch of aged ApoE(-/-) mice after injection of a contrast agent.
Arterioscler Thromb Vasc Biol
April 2013
Recent advances in molecular resonance imaging of atherosclerosis enable to visualize atherosclerotic plaques in vivo using molecular targeted contrast agents. This offers opportunities to study atherosclerosis development and plaque vulnerability noninvasively. In this review, we discuss MRI contrast agents targeted toward atherosclerotic plaques and illustrate how these new imaging platforms could assist in our understanding of atherogenesis and atheroprogression.
View Article and Find Full Text PDFThe use of contrast-enhanced MRI to enable in vivo specific characterization of atherosclerotic plaques is increasing. In this study the intrinsic ability of two differently sized gadolinium-based contrast agents to enhance atherosclerotic plaques in ApoE(-/-) mice was evaluated with MRI. We obtained a kinetic profile for contrast enhancement, as the literature data on optimal imaging time points is scarce, and assessed the longer-term kinetics.
View Article and Find Full Text PDFMRI using targeted contrast agents (CA) has emerged as a promising technique to study atherothrombotic disease in vivo. Particularly, the use of targeted Gd and lipid-based nanoparticles has enabled detailed in vivo imaging of various molecular markers of atherosclerotic plaque pathophysiology. For validation purposes, it is crucial that nanoparticle accumulation in the plaque, cellular association and localization can be assessed by ex vivo immuno-histology or fluorescence microscopy of tissue sections.
View Article and Find Full Text PDFLack of dystrophin results in skeletal muscle dystrophy and dilated cardiomyopathy in humans and animal models. To achieve a basic understanding of the natural development of cardiomyopathy in different dystrophinopathy mouse models, left and right ventricular heart function was assessed at different ages in three dystrophinopathy mouse models (mdx, mdx/utrn(+/-) model and mdx/utrn(-/-)) using magnetic resonance imaging. Left ventricular function was significantly decreased, already at 2months in the most severely affected mdx/utrn(-/-) mice.
View Article and Find Full Text PDFBackground: We investigated whether (1) monocrotaline(MCT)-induced right ventricular (RV) dilatation is associated with re-expression of myocardial tenascin-C (TNC), (2) elevated plasma TNC levels can be used as a marker of ventricular dilatation, and (3) MCT-induced RV dilatation is associated with alterations of other remodeling-related proteins.
Methods: Rats were treated with MCT in low dose (30 mg/kg, MCT30, n=10) to induce compensated RV hypertrophy, in high dose (80 mg/kg, MCT80, n=11) to induce RV failure, and with saline as control (CONT, n=9). After 4 weeks, RV function was assessed.
Background: In patients with heart failure cardiac resynchronization therapy (CRT) leads to reverse ventricular remodelling.
Aim: To evaluate whether myocardial collagen metabolism in patients with heart failure is implicated in adverse ventricular remodelling and response to CRT.
Methods: Collagen synthesis and degradation were assessed from the concentrations of aminoterminal propeptides of type I and type III collagen (PINP and PIIINP) and carboxyterminal telopeptide of type I collagen (ICTP), respectively, in serum of 64 patients with heart failure before and after 6 months of CRT.
Background: In heart failure patients, cardiac resynchronization therapy (CRT) leads to reverse ventricular remodelling.
Aim: The aim of this study was to evaluate whether changes in levels of circulating biomarkers of extracellular matrix metabolism correlate with the response to CRT.
Methods And Results: Clinical parameters, left ventricular (LV) volumes, and circulating levels of tenascin-C (TNC), matrix metalloproteinase-2 (MMP-2), MMP-9, and amino-terminal propeptide of brain natriuretic peptide (NT-proBNP) were assessed in 64 patients at baseline and 6 months follow-up.
Am J Physiol Heart Circ Physiol
November 2006
We characterized hemodynamics and systolic and diastolic right ventricular (RV) function in relation to structural changes in the rat model of monocrotaline (MCT)-induced pulmonary hypertension. Rats were treated with MCT at 30 mg/kg body wt (MCT30, n = 15) and 80 mg/kg body wt (MCT80, n = 16) to induce compensated RV hypertrophy and RV failure, respectively. Saline-treated rats served as control (Cont, n = 13).
View Article and Find Full Text PDF