Publications by authors named "Brighty D"

Clonal expansion of human T-lymphotropic virus type-1 (HTLV-1) infected cells in vivo is well documented. Unlike human immunodeficiency virus type 1 (HIV-1), HTLV-1 plasma RNA is sparse. The contribution of the "mitotic" spread of HTLV-1 compared with infectious spread of the virus to HTLV-1 viral burden in established infection is uncertain.

View Article and Find Full Text PDF

Nonsense-mediated mRNA decay (NMD) is an essential and conserved cellular mRNA quality control mechanism. RNA signals to express viral genes from overlapping open reading frames potentially initiate NMD, nevertheless it is not clear whether viral RNAs are sensitive to NMD or if viruses have evolved mechanisms to evade NMD. Here we demonstrate that the genomic and full-length mRNAs of Human-T-cell Leukemia Virus type-I (HTLV-1), a retrovirus responsible for Adult T-cell Leukemia (ATL), are sensitive to NMD.

View Article and Find Full Text PDF

Infection of human cells by human T cell leukemia virus type 1 (HTLV-1) is mediated by the viral envelope glycoproteins. The gp46 surface glycoprotein binds to cell surface receptors, including heparan sulfate proteoglycans, neuropilin 1, and glucose transporter 1, allowing the transmembrane glycoprotein to initiate fusion of the viral and cellular membranes. The envelope glycoproteins are recognized by neutralizing Abs and CTL following a protective immune response, and therefore, represent attractive components for a HTLV-1 vaccine.

View Article and Find Full Text PDF

Refolding of viral class-1 membrane fusion proteins from a native state to a trimer-of-hairpins structure promotes entry of viruses into cells. Here we present the structure of the bovine leukaemia virus transmembrane glycoprotein (TM) and identify a group of asparagine residues at the membrane-distal end of the trimer-of-hairpins that is strikingly conserved among divergent viruses. These asparagines are not essential for surface display of pre-fusogenic envelope.

View Article and Find Full Text PDF

A synthetic peptide based on the leash and alpha-helical region (LHR) of human T cell leukemia virus type 1 envelope is a potent inhibitor of viral entry into cells. The inhibitory peptide targets a triple-stranded coiled-coil motif of the fusion-active transmembrane glycoprotein and in a trans-dominant negative manner blocks resolution to the trimer-of-hairpins form. The LHR-mimetic is, therefore, functionally analogous to the C34/T20-type inhibitors of human immunodeficiency virus.

View Article and Find Full Text PDF

The human T-cell lymphotropic virus type 1 (HTLV-1) is the cause of adult T-cell leukemia and inflammatory diseases including HTLV-1-associated myelopathy/tropical spastic paraparesis. HTLV-1 can be transmitted through sexual contact, mother-to-child transmission, and exposure to contaminated blood. Microbicides are agents that interfere with microbial infectivity at mucous membranes, and candidates are under development for use against sexually transmitted viruses such as human immunodeficiency virus type 1.

View Article and Find Full Text PDF

Background: Human T-cell leukaemia virus (HTLV-1) and bovine leukaemia virus (BLV) entry into cells is mediated by envelope glycoprotein catalyzed membrane fusion and is achieved by folding of the transmembrane glycoprotein (TM) from a rod-like pre-hairpin intermediate to a trimer-of-hairpins. For HTLV-1 and for several virus groups this process is sensitive to inhibition by peptides that mimic the C-terminal alpha-helical region of the trimer-of-hairpins.

Results: We now show that amino acids that are conserved between BLV and HTLV-1 TM tend to map to the hydrophobic groove of the central triple-stranded coiled coil and to the leash and C-terminal alpha-helical region (LHR) of the trimer-of-hairpins.

View Article and Find Full Text PDF

Viral fusion proteins mediate the entry of enveloped viral particles into cells by inducing fusion of the viral and target cell membranes. Activated fusion proteins undergo a cascade of conformational transitions and ultimately resolve into a compact trimer of hairpins or six-helix bundle structure, which pulls the interacting membranes together to promote lipid mixing. Significantly, synthetic peptides based on a C-terminal region of the trimer of hairpins are potent inhibitors of membrane fusion and viral entry, and such peptides are typically extensively alpha-helical.

View Article and Find Full Text PDF

The human T-cell leukemia virus transmembrane glycoprotein (TM) is a typical class 1 membrane fusion protein and a subunit of the viral envelope glycoprotein complex. Following activation, the TM undergoes conformational transitions from a native nonfusogenic state to a fusion-active pre-hairpin intermediate that subsequently resolves to a compact trimer-of-hairpins or six-helix bundle. Disruption of these structural transitions inhibits membrane fusion and viral entry and validates TM as an anti-viral and vaccine target.

View Article and Find Full Text PDF
Article Synopsis
  • HTLV-1 relies on its envelope glycoprotein for cell entry, specifically through membrane fusion facilitated by conformational changes in the transmembrane glycoprotein (TM).
  • Synthetic peptides that disrupt these conformational changes can effectively inhibit both fusion and viral entry, highlighting TM as a potential antiviral target.
  • Research shows that a recombinant form of TM is highly immunogenic, generating antibodies that bind to TM but do not neutralize HTLV-1 infection, indicating the need for vaccine strategies that promote both neutralizing and complement-fixing antibody responses against the virus.
View Article and Find Full Text PDF

Fusion of the viral and cellular membranes is a critical step in the infection of cells by the human T-cell leukemia virus type 1 (HTLV-1) and this process is catalysed by the viral envelope glycoproteins. During fusion, the transmembrane glycoprotein (TM) is thought to undergo a transition from a rod-like pre-hairpin conformation that is stabilized by a trimeric coiled coil to a more compact six-helix-bundle or trimer-of-hairpins structure. Importantly, synthetic peptides that interfere with the conformational changes of TM are potent inhibitors of membrane fusion and HTLV-1 entry, suggesting that the pre-hairpin motif is a valid target for antiviral therapy.

View Article and Find Full Text PDF

Nuclear export of unspliced and incompletely spliced human immunodeficiency virus type 1 mRNA is mediated by the viral Rev protein. Rev binds to a structured RNA motif known as the Rev-response element (RRE), which is present in all Rev-dependent transcripts, and thereby promotes entry of the ribonucleoprotein complex into the nuclear-export pathway. Recent evidence indicates that a dimerization interface and a genetically separable "trimerization" interface are required for multimeric assembly of Rev on the RRE.

View Article and Find Full Text PDF

The major receptors required for attachment and entry of the human T-cell leukemia virus type 1 (HTLV-1) remain to be identified. Here we demonstrate that a functional, soluble form of the HTLV-1 surface envelope glycoprotein, gp46, fused to an immunoglobulin Fc region (gp46-Fc) binds to heparan sulfate proteoglycans (HSPGs) on mammalian cells. Substantial binding of gp46-Fc to HeLa and Chinese hamster ovary (CHO) K1 cells that express HSPGs was detected, whereas binding to the sister CHO lines 2244, which expresses no HSPGs, and 2241, which expresses no glycosaminoglycans (GAGs), was much reduced.

View Article and Find Full Text PDF

Retrovirus entry into cells is mediated by the viral envelope glycoproteins which, through a cascade of conformational changes, orchestrate fusion of the viral and cellular membranes. In the absence of membrane fusion, viral entry into the host cell cannot occur. For human T-cell leukemia virus type 1 (HTLV-1), synthetic peptides that mimic a carboxy-terminal region of the transmembrane glycoprotein (TM) ectodomain are potent inhibitors of membrane fusion and virus entry.

View Article and Find Full Text PDF

Entry of human T-cell leukemia virus type 1 (HTLV-1) into cells is mediated by the viral envelope glycoproteins gp46 and gp21. The gp46 surface glycoprotein binds to a poorly characterized cell surface receptor, thereby promoting the gp21-dependent fusion of the viral and cellular membranes. Interestingly, a synthetic peptide (P-197) simulating amino acids 197 to 216 of gp46 strongly inhibits envelope-dependent membrane fusion with Molt-4 target cells.

View Article and Find Full Text PDF

Efficient entry into, and infection of, human cells by human T-cell leukaemia virus type-1 (HTLV-1) is mediated by the viral envelope glycoproteins, gp46 and gp21. The gp46 surface glycoprotein binds to an as yet unidentified cell surface receptor, thereby, allowing the gp21 transmembrane glycoprotein to initiate fusion of the viral and cellular membranes. In the absence of membrane fusion viral penetration and entry into the host cell cannot occur.

View Article and Find Full Text PDF

The envelope glycoproteins of human T-cell leukemia virus type 1 (HTLV-1) perform functions that are crucial for virus entry into cells. The surface glycoprotein (SU) is responsible for viral recognition of, and binding to, target cells through its interaction with an unknown cell surface receptor. To facilitate molecular analysis of the receptor-binding properties of SU and to characterize the cellular receptor employed by HTLV-1, we have expressed a recombinant SU fused to the Fc domain of human immunoglobulin G.

View Article and Find Full Text PDF

The Rev protein of human immunodeficiency virus is a nuclear shuttling protein that promotes nuclear export of mRNAs that encode the viral structural proteins Gag, Pol, and Env. Rev binds to a highly structured RNA motif, the Rev-responsive element (RRE), that is present in all Rev-responsive viral transcripts and facilitates their entry into a nuclear export pathway by recruiting cellular export factors. In mammalian and yeast cells, the principal export receptor engaged by Rev has been identified as the importin/transportin family member CRM1/exportin 1.

View Article and Find Full Text PDF

The human immunodeficiency virus type 1 (HIV-1) Rev protein mediates the accumulation of unspliced and singly spliced viral transcripts within the cytoplasm of infected cells, late in the infection cycle, leading to the expression of the viral structural proteins, Gag, Pol, and Env. Rev binds to a complex RNA structure, the Rev-responsive element (RRE), present in all Rev-responsive viral transcripts, relieving their nuclear sequestration. The precise mechanism by which RRE-containing transcripts are retained within the nucleus in the absence of Rev protein is not well understood.

View Article and Find Full Text PDF

The Rev protein of human immunodeficiency virus type 1 (HIV-1) binds to an RNA structure, the Rev-responsive element (RRE), to enhance expression of the viral structural genes by relieving the nuclear sequestration of incompletely spliced viral transcripts. It has been suggested that nuclear retention of these mRNAs, in mammalian cells, is due to the activity of either cis-acting repressive sequence elements or to inefficient splicing signals. Expression of the HIV-1 envelope gene in transfected Drosophila cells is also dependent upon Rev coexpression and, hence, the mechanism of nuclear retention and Rev regulation are highly conserved.

View Article and Find Full Text PDF

Recent evidence indicates that primary clinical isolates of human immunodeficiency virus type 1 (HIV-1) require significantly more soluble CD4 (sCD4) to block infection than the prototypic laboratory strain HTLV-IIIB. The currently accepted explanation for these observations is that the envelope glycoproteins from primary clinical isolates possess lower affinities for CD4 than laboratory strains. This observation has far reaching implications for the clinical effectiveness of sCD4.

View Article and Find Full Text PDF