Hydrogenated amorphous silicon (a-Si:H)-based infrared photodiodes were fabricated by coating a-Si:H thin-film p-i-n layers over hydrothermally-synthesized disordered zinc oxide (ZnO) nanowire (NW) networks. Due to enhanced light scattering, the reversed biased three dimensional (3-D) radial-junction NW diodes showed an ∼10× increase in photocurrent under a broad spectrum (800-2000 nm) infrared (IR) illumination compared to planar devices. The diodes were optimized by using InGaZnO (IGZO) transparent top contacts that had 20% higher optical transmission in the IR compared to Al-doped ZnO electrodes.
View Article and Find Full Text PDFThe optics of core / shell nanowire solar cells was investigated. The optical wave propagation was studied by finite difference time domain simulations using realistic interface morphologies. The interface morphologies were determined by a 3D surface coverage algorithm, which provides a realistic film formation of amorphous silicon films on zinc oxide nanowire arrays.
View Article and Find Full Text PDF