Publications by authors named "Brie E Paddock"

While normal levels of reactive oxygen and nitrogen species (RONS) are required for proper organismal function, increased levels result in oxidative stress. Oxidative stress may be managed via the scavenging activities of antioxidants (e.g.

View Article and Find Full Text PDF

Oxidative stress, which occurs from an imbalance of reactive oxygen and nitrogen species (RONS) and both endogenous and exogenous antioxidants, promotes aging and underlies sex-specific differences in longevity and susceptibility to age-related neurodegeneration. Recent evidence suggests that curcumin, a yellow pigment derived from turmeric and shown to exhibit antioxidant properties as a RONS scavenger, influences the regulation of genetic elements in endogenous antioxidant pathways. To investigate the role of curcumin in sex-specific responses to oxidative stress, were reared on media supplemented with 0.

View Article and Find Full Text PDF

The draft genome of sp. strain ventii, an environmental isolate recovered from deep-sea hydrothermal vents in the Pacific Ocean, is presented along with the resequenced draft genomes of the type strains 11A07 and NCL 716.

View Article and Find Full Text PDF

sp. strain OCN044 is a Gram-negative gammaproteobacterium found in marine environments. Presented here is the whole-draft genome sequence of nonpathogenic sp.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is an age-related neurodegenerative disease characterized by memory loss and decreased synaptic function. Advances in transgenic animal models of AD have facilitated our understanding of this disorder, and have aided in the development, speed and efficiency of testing potential therapeutics. Recently, we have described the characterization of a novel model of AD in the fruit fly, Drosophila melanogaster, where we expressed the human AD-associated proteins APP and BACE in the central nervous system of the fly.

View Article and Find Full Text PDF

A majority of the genes linked to human disease belong to evolutionarily conserved pathways found in simpler organisms, such as Caenorhabditis elegans and Drosophila melanogaster. The genes and pathways of these simple organisms can be genetically and pharmacologically manipulated to better understand the function of their orthologs in vivo, and how these genes are involved in the pathogenesis of different diseases. Often these manipulations can be performed much more rapidly in flies and worms than in mammals, and can generate high quality in vivo data that is translatable to mammalian systems.

View Article and Find Full Text PDF

Transgenic models of Alzheimer's disease (AD) have made significant contributions to our understanding of AD pathogenesis, and are useful tools in the development of potential therapeutics. The fruit fly, Drosophila melanogaster, provides a genetically tractable, powerful system to study the biochemical, genetic, environmental, and behavioral aspects of complex human diseases, including AD. In an effort to model AD, we over-expressed human APP and BACE genes in the Drosophila central nervous system.

View Article and Find Full Text PDF

The vesicle protein synaptotagmin I is the Ca(2+) sensor that triggers fast, synchronous release of neurotransmitter. Specifically, Ca(2+) binding by the C(2)B domain of synaptotagmin is required at intact synapses, yet the mechanism whereby Ca(2+) binding results in vesicle fusion remains controversial. Ca(2+)-dependent interactions between synaptotagmin and SNARE (soluble N-ethylmaleimide-sensitive fusion protein attachment receptor) complexes and/or anionic membranes are possible effector interactions.

View Article and Find Full Text PDF

Synaptotagmin I is the Ca(2+) sensor for fast, synchronous release of neurotransmitter; however, the molecular interactions that couple Ca(2+) binding to membrane fusion remain unclear. The structure of synaptotagmin is dominated by two C(2) domains that interact with negatively charged membranes after binding Ca(2+). In vitro work has implicated a conserved basic residue at the tip of loop 3 of the Ca(2+)-binding pocket in both C(2) domains in coordinating this electrostatic interaction with anionic membranes.

View Article and Find Full Text PDF