The impact of human pulmonary tuberculosis (TB) on the bioenergetic metabolism of circulating immune cells remains elusive, as does the resolution of these effects with TB treatment. In this study, the rates of oxidative phosphorylation (OXPHOS) and glycolysis in circulating lymphocytes and monocytes of patients with drug-susceptible TB at diagnosis, 2 months, and 6 months during treatment, and 12 months after diagnosis were investigated using extracellular flux analysis. At diagnosis, the bioenergetic parameters of both blood lymphocytes and monocytes of TB patients were severely impaired in comparison to non-TB and non-HIV-infected controls.
View Article and Find Full Text PDFCell division must be coordinated with DNA repair, which is strictly regulated in response to different drugs and environmental stresses in bacteria. However, the mechanisms by which mycobacteria orchestrate these two processes remain largely uncharacterized. Here, we report a regulatory loop between two essential mycobacterial regulators, McdR (Rv1830) and WhiB2, in coordinating the processes of cell division and DNA repair.
View Article and Find Full Text PDFHigh attrition rates in tuberculosis (TB) drug development have been largely attributed to safety, which is likely due to the use of endpoint assays measuring cell viability to detect drug cytotoxicity. In drug development for cancer, metabolic, and neurological disorders and for antibiotics, cytotoxicity is increasingly being assessed using extracellular flux (XF) analysis, which measures cellular bioenergetic metabolism in real time. Here, we adopt the XF platform to investigate the cytotoxicity of drugs currently used in TB treatment on the bioenergetic metabolism of HepG2 cells, THP-1 macrophages, and human monocyte-derived macrophages (hMDMs).
View Article and Find Full Text PDFFront Cell Infect Microbiol
June 2021
Tuberculosis (TB) was responsible for more deaths in 2019 than any other infectious agent. This epidemic is exacerbated by the ongoing development of multi-drug resistance and HIV co-infection. Recent studies have therefore focused on identifying host-directed therapies (HDTs) that can be used in combination with anti-mycobacterial drugs to shorten the duration of TB treatment and improve TB outcomes.
View Article and Find Full Text PDFMetabolism plays an important role in the activation and effector functions of macrophages. Intracellular pathogens, such as Mycobacterium tuberculosis, subvert the immune functions of macrophages to establish an infection by modulating the metabolism of the macrophage. Here, we describe how the Seahorse Extracellular Flux Analyzer (XF) from Agilent Technologies can be used to study the changes in the bioenergetic metabolism of the macrophages induced by infection with mycobacteria.
View Article and Find Full Text PDFIndoleamine 2,3-dioxygenase (IDO) is the rate-limiting enzyme in conversion of tryptophan to kynurenines, feeding de novo nicotinamide synthesis. IDO orchestrates materno-foetal tolerance, increasing human reproductive fitness. IDO mediates immune suppression through depletion of tryptophan required by T lymphocytes and other mechanisms.
View Article and Find Full Text PDFThe mechanisms whereby () rewires the host metabolism in vivo are surprisingly unexplored. Here, we used three high-resolution mass spectrometry platforms to track altered lung metabolic changes associated with infection of mice. The multiplatform data sets were merged using consensus orthogonal partial least squares-discriminant analysis (cOPLS-DA), an algorithm that allows for the joint interpretation of the results from a single multivariate analysis.
View Article and Find Full Text PDFThe ubiquitous gasotransmitter hydrogen sulfide (HS) has been recognized to play a crucial role in human health. Using cystathionine γ-lyase (CSE)-deficient mice, we demonstrate an unexpected role of HS in () pathogenesis. We showed that infected CSE mice survive longer than WT mice, and support reduced pathology and lower bacterial burdens in the lung, spleen, and liver.
View Article and Find Full Text PDFThe intraerythrocytic malaria parasite digests haemoglobin to provide amino acids for metabolism and releases toxic haem that is sequestered into haemozoin, a non-toxic, insoluble, crystalline pigment. Following erythrocyte rupture, haemozoin is released into circulation and phagocytosed by monocytes. Phagocytosed haemozoin and antimalarial drugs have both been reported to modulate monocyte functions.
View Article and Find Full Text PDFHow () rewires macrophage energy metabolism to facilitate survival is poorly characterized. Here, we used extracellular flux analysis to simultaneously measure the rates of glycolysis and respiration in real time. infection induced a quiescent energy phenotype in human monocyte-derived macrophages and decelerated flux through glycolysis and the TCA cycle.
View Article and Find Full Text PDFTo facilitate survival under drug stresses, a small population of Mycobacterium tuberculosis can tolerate bactericidal concentrations of drugs without genetic mutations. These drug-tolerant mycobacteria can be induced by environmental stresses and contribute to recalcitrant infections. However, mechanisms underlying the development of drug-tolerant mycobacteria remain obscure.
View Article and Find Full Text PDFSignificance: L-ergothioneine is synthesized in actinomycetes, cyanobacteria, methylobacteria, and some fungi. In contrast to other low-molecular-weight redox buffers, glutathione and mycothiol, ergothioneine is primarily present as a thione rather than a thiol at physiological pH, which makes it resistant to autoxidation. Ergothioneine regulates microbial physiology and enables the survival of microbes under stressful conditions encountered in their natural environments.
View Article and Find Full Text PDFSignals modulating the production of Mycobacterium tuberculosis (Mtb) virulence factors essential for establishing long-term persistent infection are unknown. The WhiB3 redox regulator is known to regulate the production of Mtb virulence factors, however the mechanisms of this modulation are unknown. To advance our understanding of the mechanisms involved in WhiB3 regulation, we performed Mtb in vitro, intraphagosomal and infected host expression analyses.
View Article and Find Full Text PDFDuring the course of infection, Mycobacterium tuberculosis (Mtb) is exposed to diverse redox stresses that trigger metabolic and physiological changes. How these stressors are sensed and relayed to the Mtb transcriptional apparatus remains unclear. Here, we provide evidence that WhiB6 differentially regulates the ESX-1 and DosR regulons through its Fe-S cluster.
View Article and Find Full Text PDFThe Mycobacterium tuberculosis (Mtb) electron transport chain (ETC) has received significant attention as a drug target, however its vulnerability may be affected by its flexibility in response to disruption. Here we determine the effect of the ETC inhibitors bedaquiline, Q203 and clofazimine on the Mtb ETC, and the value of the ETC as a drug target, by measuring Mtb's respiration using extracellular flux technology. We find that Mtb's ETC rapidly reroutes around inhibition by these drugs and increases total respiration to maintain ATP levels.
View Article and Find Full Text PDFThe mechanisms by which Mycobacterium tuberculosis (Mtb) maintains metabolic equilibrium to survive during infection and upon exposure to antimycobacterial drugs are poorly characterized. Ergothioneine (EGT) and mycothiol (MSH) are the major redox buffers present in Mtb, but the contribution of EGT to Mtb redox homeostasis and virulence remains unknown. We report that Mtb WhiB3, a 4Fe-4S redox sensor protein, regulates EGT production and maintains bioenergetic homeostasis.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2015
During infection, Mycobacterium tuberculosis is exposed to a diverse array of microenvironments in the human host, each with its own unique set of redox conditions. Imbalances in the redox environment of the bacillus or the host environment serve as stimuli, which could regulate virulence. The ability of M.
View Article and Find Full Text PDFIn interferon-γ activated human macrophages, GTP-cyclohydrolase 1 catalyses the conversion of guanosine triphosphate to 7,8-dihydroneopterin triphosphate, which is dephosphorylated and oxidized to form neopterin. Elevated levels of neopterin have been detected in the urine and serum of malaria-infected patients. In this study, U937 cells were treated with interferon-γ and one of the following antimalarial drugs: amodiaquine, artemisinin, chloroquine, doxycycline, primaquine, pyrimethamine or quinine.
View Article and Find Full Text PDF