Publications by authors named "Bridgette M Beckwith-Hall"

A metabonomic approach to nutrition research may provide an insight into in vivo mechanisms of action following nutritional intervention. This approach was applied to investigate changes in the (1)H NMR spectral profile of urine collected from controlled dietary intervention studies conducted in premenopausal women before and following soy or miso consumption. The aim of the study was to identify the biochemical effects of a diet rich in soy isoflavones, phytochemicals which are receiving significant attention because of their potential importance to human health and wide bioactivity in vitro.

View Article and Find Full Text PDF

This study describes the first metabonomic approach to determining biochemical modifications following dietary intervention in humans. Significant interest in the mechanisms of action of soy isoflavones has predominantly stemmed from in vitro experiments but to date the availability of analytical tools for studying the mechanisms of action in vivo have been limited. Here a metabonomic approach based on chemometric analysis of 1H nuclear magnetic resonance spectra of blood plasma has been used to investigate metabolic changes following dietary intervention with soy isoflavones in healthy premenopausal women under controlled environmental conditions.

View Article and Find Full Text PDF

It has been shown extensively, that chemometric investigations of 1H NMR spectra of rat urine taken from animals dosed with model toxins produce characteristic patterns of metabolic responses and that this permits the identification of biomarkers of toxic response and regeneration. To date, metabonomic methods have been mainly optimised for urine which contains mainly low molecular weight moieties, and thus a conventional 1-dimensional 1H NMR pulse sequence is an efficient means of obtaining information-rich data. In the case of biofluids such as blood plasma or serum, which contain a wide range of macromolecules the resonances of which can overlap with peaks from small molecule metabolites, the information giving rise to sample classification can be concealed in a conventional NMR spectrum andthis presents a different analytical challenge in terms of chemometric analysis of spectral profiles.

View Article and Find Full Text PDF

1H nuclear magnetic resonance (NMR)-based metabonomics is a well-established technique used to analyse and interpret complex multiparametric metabolic data, and has a wide number of applications in the development of pharmaceuticals. However, interpretation of biological data can be confounded by extraneous variation in the data such as fluctuations in either experimental conditions or in physiological status. Here we have shown the novel application of a data filtering method, orthogonal signal correction (OSC), to biofluid NMR data to minimise the influence of inter- and intra-spectrometer variation during data acquisition, and also to minimise innate physiological variation.

View Article and Find Full Text PDF

The biochemical effects of a series of commonly used drug carrier vehicles were investigated using (1)H NMR spectroscopic and pattern recognition based metabonomic analysis. Animals were treated by oral gavage with six dosage vehicles: 0.5% (w/v) sodium carboxymethylcellulose/0.

View Article and Find Full Text PDF