Publications by authors named "Bridgette Hughes"

In this retrospective study, we measured enterovirus D68 (EV-D68) genomic RNA in wastewater solids longitudinally at 2 California, USA, wastewater treatment plants twice per week for 26 months. EV-D68 RNA was undetectable except when concentrations increased from mid-July to mid-December 2022, which coincided with a peak in confirmed EV-D68 cases.

View Article and Find Full Text PDF

Wastewater monitoring can provide insights into respiratory disease occurrence in communities that contribute to the wastewater system. Using daily measurements of RNA of influenza A (IAV), respiratory syncytial virus (RSV), and human metapneumovirus (HMPV), as well as SARS-CoV-2 in wastewater solids from eight publicly owned treatment works in the Greater San Francisco Bay Area of California between July 2022 and early July 2023, we identify a "tripledemic" when concentrations of IAV, RSV, and SARS-CoV-2 peaked at approximately the same time. HMPV was also widely circulating.

View Article and Find Full Text PDF

Background: Human norovirus (HuNoV) is a leading cause of disease globally, yet actual incidence is unknown. HuNoV infections are not reportable in the United States, and surveillance is limited to tracking severe illnesses or outbreaks. Wastewater monitoring for HuNoV has been done previously and results indicate it is present in wastewater influent and concentrations are associated with HuNoV infections in the communities contributing to wastewater.

View Article and Find Full Text PDF

Concentrations of SARS-CoV-2 RNA in wastewater settled solids from publicly owned treatment works (POTWs) historically correlated strongly with laboratory confirmed incident COVID-19 case data. With the increased availability of at-home antigen tests since late 2021 and early 2022, laboratory test availability and test seeking behavior has decreased. In the United States, the results from at-home antigen tests are not typically reportable to public health agencies and thus are not counted in case reports.

View Article and Find Full Text PDF

We measured concentrations of SARS-CoV-2, influenza A and B virus, respiratory syncytial virus (RSV), mpox virus, human metapneumovirus, norovirus GII, and pepper mild mottle virus nucleic acids in wastewater solids at twelve wastewater treatment plants in Central California, USA. Measurements were made daily for up to two years, depending on the wastewater treatment plant. Measurements were made using digital droplet (reverse-transcription-) polymerase chain reaction (RT-PCR) following best practices for making environmental molecular biology measurements.

View Article and Find Full Text PDF

Background: Respiratory disease is a major cause of morbidity and mortality; however, surveillance for circulating respiratory viruses is passive and biased. Wastewater-based epidemiology has been used to understand SARS-CoV-2, influenza A, and respiratory syncytial virus (RSV) infection rates at a community level but has not been used to investigate other respiratory viruses. We aimed to use wastewater-based epidemiology to understand community viral respiratory infection occurrence.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA concentrations in wastewater settled solids correlate well with coronavirus disease 2019 (COVID-19) incidence rates (IRs). Here, we develop distributed lag models to estimate IRs using concentrations of SARS-CoV-2 RNA from wastewater solids and investigate the impact of sampling frequency on model performance. SARS-CoV-2 N gene and pepper mild mottle virus (PMMoV) RNA concentrations were measured daily at four wastewater treatment plants in California.

View Article and Find Full Text PDF

Greater knowledge of circulating SARS-CoV-2 variants can inform pandemic response, vaccine development, disease epidemiology, and use of monoclonal antibody treatments. We developed custom assays targeting characteristic mutations in SARS-CoV-2 variants Omicron BA.1 and BA.

View Article and Find Full Text PDF

Background: The effective reproductive number, , is a critical indicator to monitor disease dynamics, inform regional and national policies, and estimate the effectiveness of interventions. It describes the average number of new infections caused by a single infectious person through time. To date, estimates are based on clinical data such as observed cases, hospitalizations, and/or deaths.

View Article and Find Full Text PDF

Changes in the circulation of SARS-CoV-2 variants of concern (VOCs) may require changes in the public health response to the COVID-19 pandemic, as they have the potential to evade vaccines and pharmaceutical interventions and may be more transmissive than other SARS-CoV-2 variants. As such, it is essential to track and prevent their spread in susceptible communities. We developed digital reverse transcription (RT)-PCR assays for mutations characteristic of VOCs and used them to quantify those mutations in samples of wastewater settled solids collected from a publicly owned treatment works (POTW) during different phases of the COVID-19 pandemic.

View Article and Find Full Text PDF

Monitoring severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) is critical for public health management of coronavirus disease. Sequencing is resource-intensive and incompletely representative, and not all isolates can be sequenced. Because wastewater SARS-CoV-2 RNA concentrations correlate with coronavirus disease incidence in sewersheds, tracking VOCs through wastewater is appealing.

View Article and Find Full Text PDF

The range of the mosquito Aedes aegypti continues to expand, putting more than two billion people at risk of arboviral infection. The sterile insect technique (SIT) has been used to successfully combat agricultural pests at large scale, but not mosquitoes, mainly because of challenges with consistent production and distribution of high-quality male mosquitoes. We describe automated processes to rear and release millions of competitive, sterile male Wolbachia-infected mosquitoes, and use of these males in a large-scale suppression trial in Fresno County, California.

View Article and Find Full Text PDF