The desire for designing efficient synthetic methods that lead to industrially important nanomaterials has led a desire to more fully understand the mechanism of growth and how modern synthetic techniques can be employed. Microwave (MW) synthesis is one such technique that has attracted attention as a green, sustainable method. The reports of enhancement of formation rates and improved quality for MW driven reactions are intriguing, but the lack of understanding of the reaction mechanism and how coupling to the MW field leads to these observations is concerning.
View Article and Find Full Text PDFMicrowave chemistry has revolutionized synthetic methodology for the preparation of organics, pharmaceuticals, materials, and peptides. The enhanced reaction rates commonly observed in a microwave have led to wide speculation about the function of molecular microwave absorption and whether the absorption leads to microwave specific effects and enhanced molecular heating. The comparison of theoretical modeling, reactor vessel design, and dielectric spectroscopy allows the nuance of the interaction to be directly understood.
View Article and Find Full Text PDF