Publications by authors named "Bridget Wagner"

Glucolipotoxicity (GLT), in which elevated levels of glucose and fatty acids have deleterious effects on β-cell biology, is thought to be one of the major contributors in progression of type 2 diabetes. In search of novel small molecules that protect β-cells against GLT, we previously discovered KD025, an inhibitor of Rho-associated coiled-coil-containing kinase isoform 2 (ROCK2), as a GLT-protective compound in INS-1E cells and dissociated human islets. To further understand the mechanism of action of KD025, we found that pharmacological and genetic inhibition of ROCK2 was not responsible for the protective effects of KD025 against GLT.

View Article and Find Full Text PDF

Pancreatic α-cells secrete glucagon, an insulin counter-regulatory peptide hormone critical for the maintenance of glucose homeostasis. Investigation of the function of human α-cells remains a challenge due to the lack of cost-effective purification methods to isolate high-quality α-cells from islets. Here, we use the reaction-based probe diacetylated Zinpyr1 (DA-ZP1) to introduce a novel and simple method for enriching live α-cells from dissociated human islet cells with ~95% purity.

View Article and Find Full Text PDF

Type 1 (T1D) or type 2 diabetes (T2D) are caused by a deficit of functional insulin-producing β cells. Thus, the identification of β cell trophic agents could allow the development of therapeutic strategies to counteract diabetes. The discovery of SerpinB1, an elastase inhibitor that promotes human β cell growth, prompted us to hypothesize that pancreatic elastase (PE) regulates β cell viability.

View Article and Find Full Text PDF

Cellular exposure to free fatty acids (FFAs) is implicated in the pathogenesis of obesity-associated diseases. However, there are no scalable approaches to comprehensively assess the diverse FFAs circulating in human plasma. Furthermore, assessing how FFA-mediated processes interact with genetic risk for disease remains elusive.

View Article and Find Full Text PDF

Predicting assay results for compounds virtually using chemical structures and phenotypic profiles has the potential to reduce the time and resources of screens for drug discovery. Here, we evaluate the relative strength of three high-throughput data sources-chemical structures, imaging (Cell Painting), and gene-expression profiles (L1000)-to predict compound bioactivity using a historical collection of 16,170 compounds tested in 270 assays for a total of 585,439 readouts. All three data modalities can predict compound activity for 6-10% of assays, and in combination they predict 21% of assays with high accuracy, which is a 2 to 3 times higher success rate than using a single modality alone.

View Article and Find Full Text PDF

Robust, generalizable approaches to identify compounds efficiently with undesirable mechanisms of action in complex cellular assays remain elusive. Such a process would be useful for hit triage during high-throughput screening and, ultimately, predictive toxicology during drug development. Here we generate cell painting and cellular health profiles for 218 prototypical cytotoxic and nuisance compounds in U-2 OS cells in a concentration-response format.

View Article and Find Full Text PDF

Unlabelled: Cellular exposure to free fatty acids (FFA) is implicated in the pathogenesis of obesity-associated diseases. However, studies to date have assumed that a few select FFAs are representative of broad structural categories, and there are no scalable approaches to comprehensively assess the biological processes induced by exposure to diverse FFAs circulating in human plasma. Furthermore, assessing how these FFA- mediated processes interact with genetic risk for disease remains elusive.

View Article and Find Full Text PDF

The need to control the activity and fidelity of CRISPR-associated nucleases has resulted in a demand for inhibitory anti-CRISPR molecules. The small-molecule inhibitor discovery platforms available at present are not generalizable to multiple nuclease classes, only target the initial step in the catalytic activity and require high concentrations of nuclease, resulting in inhibitors with suboptimal attributes, including poor potency. Here we report a high-throughput discovery pipeline consisting of a fluorescence resonance energy transfer-based assay that is generalizable to contemporary and emerging nucleases, operates at low nuclease concentrations and targets all catalytic steps.

View Article and Find Full Text PDF

Insulin expression is primarily restricted to the pancreatic β cells, which are physically or functionally depleted in diabetes. Identifying targetable pathways repressing insulin in non-β cells, particularly in the developmentally related glucagon-secreting α cells, is an important aim of regenerative medicine. Here, we perform an RNA interference screen in a murine α cell line to identify silencers of insulin expression.

View Article and Find Full Text PDF

The pancreatic beta cell is the only cell type in the body responsible for insulin secretion, and thus plays a unique role in the control of glucose homeostasis. The loss of beta-cell mass and function plays an important role in both type 1 and type 2 diabetes. Thus, using chemical biology to identify small molecules targeting the beta cell could be an important component to developing future therapeutics for diabetes.

View Article and Find Full Text PDF

Type 2 diabetes is marked by progressive β-cell failure, leading to loss of β-cell mass. Increased levels of circulating glucose and free fatty acids associated with obesity lead to β-cell glucolipotoxicity. There are currently no therapeutic options to address this facet of β-cell loss in obese type 2 diabetes patients.

View Article and Find Full Text PDF

Tocilizumab, an anti-IL-6 receptor antibody, had no statistically significant effect on skin sclerosis but preserved lung function over 48 weeks in patients with early systemic sclerosis (SSc)-associated interstitial lung disease (ILD) in a phase 3 randomized controlled trial. Assess long-term safety and efficacy of tocilizumab. Adults with diffuse cutaneous SSc for ⩽60 months and elevated acute-phase reactants, including those with ILD, received weekly placebo or tocilizumab 162 mg subcutaneously in the 48-week, double-blind period and then open-label tocilizumab from Weeks 48 to 96 (placebo-tocilizumab; continuous-tocilizumab).

View Article and Find Full Text PDF

Cancer therapies are being considered for treating rare noncancerous diseases like pulmonary hypertension (PH), but effective computational screening is lacking. Via transcriptomic differential dependency analyses leveraging parallels between cancer and PH, we mapped a landscape of cancer drug functions dependent upon rewiring of PH gene clusters. Bromodomain and extra-terminal motif (BET) protein inhibitors were predicted to rely upon several gene clusters inclusive of galectin-8 (LGALS8).

View Article and Find Full Text PDF

Compound-dependent assay interferences represent a continued burden in drug and chemical probe discovery. The open-source National Institutes of Health/National Center for Advancing Translational Sciences (NIH/NCATS) (AGM) established an "Assay Artifacts and Interferences" section to address different sources of artifacts and interferences in biological assays. In addition to the frequent introduction of new chapters in this important topic area, older chapters are periodically updated by experts from academia, industry, and government to include new technologies and practices.

View Article and Find Full Text PDF

Small-molecule discovery typically involves large-scale screening campaigns, spanning multiple compound collections. However, such activities can be cost- or time-prohibitive, especially when using complex assay systems, limiting the number of compounds tested. Further, low hit rates can make the process inefficient.

View Article and Find Full Text PDF

The characterization of cancer genomes has provided insight into somatically altered genes across tumors, transformed our understanding of cancer biology, and enabled tailoring of therapeutic strategies. However, the function of most cancer alleles remains mysterious, and many cancer features transcend their genomes. Consequently, tumor genomic characterization does not influence therapy for most patients.

View Article and Find Full Text PDF

Compounds that exhibit assay interference or undesirable mechanisms of bioactivity ("nuisance compounds") are routinely encountered in cellular assays, including phenotypic and high-content screening assays. Much is known regarding compound-dependent assay interferences in cell-free assays. However, despite the essential role of cellular assays in chemical biology and drug discovery, there is considerably less known about nuisance compounds in more complex cell-based assays.

View Article and Find Full Text PDF

Highly sensitive approaches to target insulin-expressing cells would allow more effective imaging, sorting, and analysis of pancreatic β-cells. Here, we introduce the use of a reaction-based probe, diacetylated Zinpyr1 (DA-ZP1), to image pancreatic β-cells and β-like cells derived from human pluripotent stem cells. We harness the high intracellular zinc concentration of β-cells to induce a fluorescence signal in cells after administration of DA-ZP1.

View Article and Find Full Text PDF

Advances in treating β cell loss include islet replacement therapies or increasing cell proliferation rate in type 1 and type 2 diabetes, respectively. We propose developing multiple proliferation-inducing prodrugs that target high concentration of zinc ions in β cells. Unfortunately, typical two-dimensional (2D) cell cultures do not mimic in vivo conditions, displaying a markedly lowered zinc content, while 3D culture systems are laborious and expensive.

View Article and Find Full Text PDF

Selective inhibition of histone deacetylase 3 (HDAC3) prevents glucolipotoxicity-induced β-cell dysfunction and apoptosis by alleviation of proapoptotic endoplasmic reticulum (ER) stress-signaling, but the precise molecular mechanisms of alleviation are unexplored. By unbiased microarray analysis of the β-cell gene expression profile of insulin-producing cells exposed to glucolipotoxicity in the presence or absence of a selective HDAC3 inhibitor, we identified Enhancer of zeste homolog 2 (EZH2) as the sole target candidate. β-Cells were protected against glucolipotoxicity-induced ER stress and apoptosis by EZH2 attenuation.

View Article and Find Full Text PDF

Background: A phase 2 trial of tocilizumab showed preliminary evidence of efficacy in systemic sclerosis. We assessed skin fibrosis and systemic sclerosis-associated interstitial lung disease (SSc-ILD) in a phase 3 trial to investigate the safety and efficacy of tocilizumab, an anti-interleukin-6 receptor antibody, in the treatment of systemic sclerosis.

Methods: In this multicentre, randomised, double-blind, placebo-controlled, phase 3 trial, participants were recruited from 75 sites in 20 countries across Europe, North America, Latin America, and Japan.

View Article and Find Full Text PDF