Graphene and its derivatives, such as graphene oxide (GO) and reduced graphene oxide (rGO), have propelled advancements in biosensor research owing to their unique physicochemical and electronic characteristics. To ensure their safe and effective utilization in biological environments, it is crucial to understand how these graphene-based nanomaterials (GNMs) interact with a biological milieu. The present study depicts GNM-induced structural changes in a self-assembled phospholipid monolayer formed at an air-water interface that can be considered to represent one of the leaflets of a cellular membrane.
View Article and Find Full Text PDFUnderstanding and controlling the structure and function of liquid interfaces is a constant challenge in biology, nanoscience and nanotechnology, with applications ranging from molecular electronics to controlled drug release. X-ray reflectivity and grazing incidence diffraction provide invaluable probes for studying the atomic scale structure at liquid-air interfaces. The new time-resolved laser system at the LISA liquid diffractometer situated at beamline P08 at the PETRA III synchrotron radiation source in Hamburg provides a laser pump with X-ray probe.
View Article and Find Full Text PDFThe functionality and efficiency of proteins within a biological membrane are highly dependent on both the membrane lipid composition and the physiochemical properties of the solution. Lipid mesophases are directly influenced by changes in temperature, pH, water content or due to individual properties of single lipids such as photoswitchability. In this work, we were able to induce light- and temperature-driven mesophase transitions in a model membrane system containing a mixture of 1,2-dipalmitoyl-phosphatidylcholine phospholipids and azobenzene amphiphiles.
View Article and Find Full Text PDFHypothesis: Room Temperature Ionic Liquids (RTILs) bulk's molecular layering dominates their structure also at the RTIL/sapphire interface, increasing the layer spacing with the cationic alkyl chain length n. However, the negatively-charged sapphire surface compresses the layers, increases the layering range, and affects the intra-layer structure in yet unknown ways.
Experiments: X-ray reflectivity (XR) off the RTIL/sapphire interface, for a broad homologous RTIL series 1-alkyl-3-methylimidazolium bis(trifluoromethansulfonyl)imide, hitherto unavailable for any RTIL.
DNA nanotechnology is the future of many products in the pharmaceutical and cosmetic industries. Self-assembly of this negatively charged biopolymer at surfaces and interfaces is an essential step to elaborate its field of applications. In this study, the ionic liquid (IL) monolayer-assisted self-assembly of DNA macromolecules at the air-water interface has been closely monitored by employing various quantitative techniques, namely, surface pressure-area (π-) isotherms, surface potential, interfacial rheology, and X-ray reflectivity (XRR).
View Article and Find Full Text PDFFollowing the reaction of biological membranes to external stimuli reveals fundamental insights into cellular function. Here, self-assembled lipid monolayers act as model membranes containing photoswitchable azobenzene glycolipids for investigating structural response during isomerization by combining Langmuir isotherms with X-ray scattering. Controlled in-situ trans/cis photoswitching of the azobenzene N = N double bond alters the DPPC monolayer structure, causing reproducible changes in surface pressure and layer thickness, indicating monolayer reorientation.
View Article and Find Full Text PDFLiquid-liquid interfaces offer intriguing possibilities for nanomaterials growth. Here, fundamental interface-related mechanisms that control the growth behavior in these systems are studied for Pb halide formation at the interface between NaX + PbX (X = F, Cl, Br) and liquid Hg electrodes using in situ X-ray scattering and complementary electrochemical and microscopy measurements. These studies reveal a decisive role of the halide species in nucleation and growth of these compounds.
View Article and Find Full Text PDFThe X-ray reflectivity technique can provide out-of-plane electron-density profiles of surfaces, interfaces, and thin films, with atomic resolution accuracy. While current methodologies require high surface flatness, this becomes challenging for naturally curved surfaces, particularly for liquid metals, due to the very high surface tension. Here, the development of X-ray reflectivity measurements with beam sizes of a few tens of micrometres on highly curved liquid surfaces using a synchrotron diffractometer equipped with a double crystal beam deflector is presented.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2021
The graphene family, especially graphene oxide (GO), has captured increasing prospects in the biomedical field due to its excellent physicochemical properties. Understanding the health and environmental impact of GO is of great importance for guiding future applications. Although their interactions with living organisms are omnipresent, the exact molecular mechanism is yet to be established.
View Article and Find Full Text PDFThis Comment raises several questions concerning the surface structure concluded in the paper referenced in the title. Specifically, that paper ignores previous experiments and simulations which demonstrate for the same ionic liquids depth-decaying, multilayered surface-normal density profiles rather than the claimed molecular mono- or bi-layers. We demonstrate that the claimed structure does not reproduce the measured X-ray reflectivity, which probes directly the surface-normal density profile.
View Article and Find Full Text PDFDetailed studies of electrochemically induced PbBrF deposition at the liquid mercury/liquid electrolyte interface are presented. The nucleation and growth were monitored using time-resolved X-ray diffraction and reflectivity combined with electrochemical measurements, revealing a complex potential-dependent behavior. PbBrF deposition commences at potentials above -0.
View Article and Find Full Text PDFWe report on the in situ monitoring of the formation of conductive superlattices of Cu1.1S nanodiscs via cross-linking with semiconducting cobalt 4,4',4'',4'''-tetraaminophthalocyanine (CoTAPc) molecules at the liquid/air interface by real-time grazing incidence small angle X-ray scattering (GISAXS). We determine the structure, symmetry and lattice parameters of the superlattices, formed during solvent evaporation and ligand exchange on the self-assembled nanodiscs.
View Article and Find Full Text PDFGlycolipids as constituents of cell membranes play an important role in cell membrane functioning. To enable the structural modification of membranes on demand, embedding of photosensitive glycolipid mimetics was envisioned and novel amphiphilic glycolipid mimetics comprising a photoswitchable azobenzene unit were synthesized. In this study, the photochromic properties of these glycolipid mimetics were analyzed by means of UV/Vis spectroscopy and reversible photoswitching.
View Article and Find Full Text PDFCorrection for 'Surface induced smectic order in ionic liquids - an X-ray reflectivity study of [CCim][NTf]' by Julian Mars et al., Phys. Chem.
View Article and Find Full Text PDFX-ray reflectivity studies of the structure of liquid-vapour and liquid-liquid interfaces at modern sources, such as free-electron lasers, are currently impeded by the lack of dedicated liquid surface diffractometers. It is shown that this obstacle can be overcome by an alternative experimental approach that uses the natural curvature of a liquid drop for variation of the angle of incidence. Two modes of operation are shown: (i) sequential reflectivity measurements by a nanometre beam and (ii) parallel acquisition of large ranges of a reflectivity curve by micrometre beams.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2018
Interfaces of room temperature ionic liquids (RTILs) are important for both applications and basic science and are therefore intensely studied. However, the evolution of their interface structure with the cation's alkyl chain length [Formula: see text] from Coulomb to van der Waals interaction domination has not yet been studied for even a single broad homologous RTIL series. We present here such a study of the liquid-air interface for [Formula: see text], using angstrom-resolution X-ray methods.
View Article and Find Full Text PDFSurface induced smectic order was found for the ionic liquid 1-methyl-3-docosylimidazolium bis(trifluoromethlysulfonyl)imide by X-ray reflectivity and grazing incidence scattering experiments. Near the free liquid surface, an ordered structure of alternating layers composed of polar and non-polar moieties is observed. This leads to an oscillatory interfacial profile perpendicular to the liquid surface with a periodicity of 3.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2017
The intrinsic strain at coupled components in magnetoelectric composites plays an important role for the properties and function of these materials. In this in situ X-ray nanodiffraction experiment, the coating-induced as well as the magnetic-field-induced strain at the coupled interface of complex magnetoelectric microcomposites were investigated. These consist of piezoelectric ZnO microrods coated with an amorphous layer of magnetostrictive (FeCo)SiB.
View Article and Find Full Text PDFThe grazing incidence x-ray scattering results presented here show that the self-assembly process of HgSe nanocrystals formed at a liquid-liquid interface is quite different along the in-plane direction and across the interface. In situ x-ray reflectivity and ex situ microscopy measurements suggest quantized out-of-plane growth for HgSe nanoparticles of a size of about [Formula: see text] nm initially. Grazing incidence small-angle x-ray scattering measurements for films transferred from the water-toluene interface at various stages of reaction show that these nanoparticles first form random clusters with an average radius of 2.
View Article and Find Full Text PDFJ Synchrotron Radiat
January 2014
The study of liquid-liquid interfaces with X-ray scattering methods requires special instrumental considerations. A dedicated liquid surface diffractometer employing a tilting double-crystal monochromator in Bragg geometry has been designed. This diffractometer allows reflectivity and grazing-incidence scattering measurements of an immobile mechanically completely decoupled liquid sample, providing high mechanical stability.
View Article and Find Full Text PDFCrystal nucleation and growth at a liquid-liquid interface is studied on the atomic scale by in situ Å-resolution X-ray scattering methods for the case of liquid Hg and an electrochemical dilute electrolyte containing Pb(2+), F(-), and Br(-) ions. In the regime negative of the Pb amalgamation potential Φ(rp) = -0.70 V, no change is observed from the surface-layered structure of pure Hg.
View Article and Find Full Text PDFRaman spectroscopy (RS) was used to determine the crystallinity of lactose (a commonly used carrier in dry powder inhaler (DPI) formulations). Samples of alpha-lactose monohydrate and amorphous lactose were prepared using ethanol precipitation and lyophilisation respectively. The anomeric forms were confirmed using DSC at a rate of 10 degrees C/min and heated to 250 degrees C.
View Article and Find Full Text PDF