Publications by authors named "Bridget L Colvin"

We investigated the role of two key immunoregulatory molecules, indoleamine dioxygenase (IDO) and inducible costimulator ligand (ICOSL), in determining the function of bone marrow (BM)-derived plasmacytoid (p)DC, which offer the potential for therapy of allograft rejection. pDC generated from BM of wild-type (WT) or IDO knockout (KO) C57BL/6 mice were used to stimulate T-cell proliferation and interferon-gamma (IFN-gamma) production in response to alloantigen (alloAg) via the direct or indirect pathways. In some experiments, pDC were first activated by exposure to CpG +/- CTLA4Ig for IDO induction via B7 ligation.

View Article and Find Full Text PDF

The role of dendritic cells (DC) in transplantation is often overshadowed by the more prominent roles of T and B cells, which interact directly with and, in the absence of immunosuppressive therapy, destroy the allograft. It has become increasingly recognized, however, that these potent antigen-presenting cells exert control over the immune response and regulate the balance between tolerance and immunity to transplanted organs and tissues. The role that chemokines play in influencing DC function with impact on regulation of immune responses against the graft is only beginning to be understood.

View Article and Find Full Text PDF

The mechanisms by which chronic ethanol (EtOH) consumption results in an immune-compromised state have not been fully elucidated. No studies to date have ascertained whether EtOH affects the migratory capacity of dendritic cells (DC), potent immune regulators. We hypothesized that EtOH exposure might affect hepatic and splenic DC trafficking to secondary lymphoid tissues and the resulting immune response.

View Article and Find Full Text PDF

Purpose Of Review: Use or targeting of dendritic cells for therapeutic manipulation of immune responses is being pursued in the areas of cancer, autoimmune disease, and allograft rejection. There is, however, a dearth of information regarding the optimal route of cell delivery or target location for maximal therapeutic effect, particularly in the field of transplantation. Further, little attention has been given to the roles that conventional experimental/immunosuppressive modalities have on the migratory capacity of these important antigen-presenting cells.

View Article and Find Full Text PDF

In this study, we propagated myeloid dendritic cells (DC) from BALB/c (H2(d)) mouse bone marrow progenitors in IL-10 and TGF-beta, then stimulated the cells with LPS. These "alternatively activated" (AA) DC expressed lower TLR4 transcripts than LPS-stimulated control DC and were resistant to maturation. They expressed comparatively low levels of surface MHC class II, CD40, CD80, CD86, and programmed death-ligand 2 (B7-DC; CD273), whereas programmed death-ligand 1 (B7-H1; CD274) and inducible costimulatory ligand expression were unaffected.

View Article and Find Full Text PDF

Dendritic cells (DCs) are uniquely well equipped antigen (Ag)-presenting cells. Their classic function was thought to be that of potent initiators of innate and adaptive immunity to infectious organisms and other Ags (including transplanted organs). Evidence has emerged, however, that DCs have a central and crucial role in determining the fate of immune responses toward either immunity or tolerance.

View Article and Find Full Text PDF

The pro-drug FTY720 is undergoing phase III clinical trials for prevention of allograft rejection. After phosphorylation, FTY720 targets the G protein-coupled-sphingosine-1-phosphate receptor 1 (S1PR1) on lymphocytes, thereby inhibiting their egress from lymphoid organs and their recirculation to inflammatory sites. Potential effects on dendritic cell (DC) trafficking have not been evaluated.

View Article and Find Full Text PDF

CCL19/MIP-3beta and CCL21/SLC are essential for chemotactic recruitment of mature dendritic cells (DC) to T-cell areas of secondary lymphoid tissue. Paucity of lymph node T-cells (plt/plt) mice lack CCL21-serine (ser) and CCL19 expression. We tested plt/plt and wild type (wt) BALB/c (H2d) mice as recipients of heart or skin allografts from C57BL/10J (H2b) donors.

View Article and Find Full Text PDF

Upon Ag uptake and response to maturation stimuli, dendritic cells (DC) are directed through lymphatic or blood vessel endothelium to T cell areas of secondary lymphoid tissues by the constitutively expressed CC chemokines CCL19 and CCL21. We have shown that mature (m) murine CD8alpha+ DC exhibit poorer migratory ability to these chemokines than classic CD8alpha- DC by quantifying their in vitro chemotaxis through unmodified Transwell filters. We hypothesized that lower surface expression (compared to CD8alpha- mDC) of the adhesion molecule CD11b on CD8alpha+ DC might limit their ability to adhere to filter pores in vitro and/or endothelium in vitro/in vivo.

View Article and Find Full Text PDF

Background: We investigated the expression and function of CC chemokine receptors (CCR) on highly-purified kidney and blood dendritic cells isolated from mice in which dendritic cells were mobilized with fms-like tyrosine 3 kinase ligand (Flt3L).

Methods: CCR and CC chemokine expression were determined by RNase protection assay or flow cytometry, and dendritic cell migratory responses assayed using Transwell chambers. Chemokine production in renal tissue was detected by immunofluorescence staining.

View Article and Find Full Text PDF

Dendritic cell (DC) trafficking is regulated by chemokine receptor expression and responsiveness to chemokines. The authors compared CC chemokine receptor (CCR) expression by mouse liver myeloid, "lymphoid-related," and plasmacytoid DC subsets and their responsiveness to CC chemokines. CCR mRNA expression by liver DC subsets was evaluated by RNase protection assay.

View Article and Find Full Text PDF

Background: Migratory antigen-presenting cells resident in kidneys may have tolerogenic potential. Difficulties inherent in their isolation have limited their characterization. The authors examined the phenotype and function of murine kidney dendritic cells (DC) mobilized in vivo by systemic administration of fms-like tyrosine 3 kinase ligand (Flt3L).

View Article and Find Full Text PDF

At the time of organ transplantation, a variety of non-parenchymal cells are transplanted simultaneously with the allograft. Recognition of the importance of these cells as potential immunostimulatory cells lead to the concept of 'passenger leukocytes' as the principal instigators of rejection. Passenger leukocytes include interstitial dendritic cells (DCs) and blood-derived monocytes/macrophages.

View Article and Find Full Text PDF

Murine CD11c(+)CD8alpha(-) and CD11c(+)CD8alpha(+) dendritic cells (DCs) differentially regulate T cell responses. Although specific chemokines that recruit immature (i) or mature (m) CD8alpha(-) DCs have been identified, little is known about the influence of chemokines on CD8alpha(+) DCs. iDCs and mDCs isolated from spleens of fms-like tyrosine kinase 3 ligand-treated B10 mice were compared directly for migratory responses to a panel of CC chemokines or following local or systemic administration.

View Article and Find Full Text PDF

There are various approaches to the enhancement of dendritic cell (DC) tolerogenicity for the promotion of cell or organ allograft survival. Both pharmacologic and biologic agents, including several commonly used immunosuppressive drugs, and specific anti-inflammatory cytokines inhibit DC maturation, whereas co-stimulation-blocking agents can also promote the induction of antigen-specific T-cell unresponsiveness by DC. Delivery of genes encoding molecules that subvert T-cell responses by various mechanisms, and targeting of DC migration by selective manipulation of chemokine and chemokine receptor expression, represent additional promising strategies.

View Article and Find Full Text PDF

Flt3 ligand (FL) administration markedly increases bone marrow (BM) stem cells and immature dendritic cells. We investigated the influence of CD40-CD40Ligand (CD154) pathway blockade on antidonor immunity, cytokine production, microchimerism and heart graft survival in BALB/c (H2d) recipients of fully allogeneic C57BL/10 (H2b) FL-mobilized BM (FL-BM) or normal BM. Anti-CD40L mAb strongly suppressed anti-donor T-cell proliferative responses in recipients of either normal or FL-BM, but was less efficient in inhibiting antidonor cytolytic T-cell (CTL) activity, especially in recipients of FL-BM.

View Article and Find Full Text PDF

Organ transplant rejection is mediated largely by circulating peripheral leukocytes induced to infiltrate the graft by various inflammatory stimuli. Of these, chemotactic cytokines called chemokines, expressed by inflamed graft tissues, as well as by early innate-responding leukocytes that infiltrate the graft, are responsible for the recruitment of alloreactive leukocytes. This report discusses the impact of these leukocyte-directing proteins on transplant outcome and novel therapeutic approaches for antirejection therapy based on targeting of chemokines and/or their receptors.

View Article and Find Full Text PDF