Wastewater receives per- and polyfluoroalkyl substances (PFAS) from diverse consumer and industrial sources, and discharges are known to be a concern for drinking water quality. The PFAS family includes thousands of potential chemical structures containing organofluorine moieties. Exposures to a few well-studied PFAS, mainly perfluoroalkyl acids (PFAA), have been associated with increased risk of many adverse health outcomes, prompting federal drinking water regulations for six compounds in 2024.
View Article and Find Full Text PDFMost monitoring programs next to large per- and polyfluoroalkyl substances (PFAS) sources focus on drinking water contamination near source zones. However, less is understood about how these sources affect downgradient hydrological systems and food webs. Here, we report paired PFAS measurements in water, sediment, and aquatic biota along a hydrological gradient away from source zones contaminated by the use of legacy aqueous film-forming foam (AFFF) manufactured using electrochemical fluorination.
View Article and Find Full Text PDFResearch on per- and polyfluoroalkyl substances (PFAS) frequently incorporates organofluorine measurements, particularly because they could support a class-based approach to regulation. However, standardized methods for organofluorine analysis in a broad suite of matrices are currently unavailable, including a method for extractable organofluorine (EOF) measured using combustion ion chromatography (CIC). Here, we report the results of an international interlaboratory comparison.
View Article and Find Full Text PDFDrinking water contamination by per- and polyfluoroalkyl substances (PFAS) is widespread near more than 300 United States (U.S.) military bases that used aqueous film-forming foams (AFFF) for fire training and firefighting activities.
View Article and Find Full Text PDFPer- and polyfluoroalkyl substances (PFAS) are a group of 4000+ man-made compounds of great concern due to their environmental ubiquity and adverse effects. Despite a general interest, few reliable detection tools for integrative passive sampling of PFAS in water are available. A microporous polyethylene tube with a hydrophilic-lipophilic balance sorbent could serve as a flow-resistant passive sampler for PFAS.
View Article and Find Full Text PDFDrinking water supplies across the United States have been contaminated by firefighting and fire-training activities that use aqueous film-forming foams (AFFF) containing per- and polyfluoroalkyl substances (PFAS). Much of the AFFF is manufactured using electrochemical fluorination by 3M. Precursors with six perfluorinated carbons (C6) and non-fluorinated amine substituents make up approximately one-third of the PFAS in 3M AFFF.
View Article and Find Full Text PDFPer- and polyfluoroalkyl substances (PFAS) are a diverse class of fluorinated anthropogenic chemicals that include perfluoroalkyl acids (PFAA), which are widely used in modern commerce. Many products and environmental samples contain abundant precursors that can degrade into terminal PFAA associated with adverse health effects. Fish consumption is an important dietary exposure source for PFAS that bioaccumulate in food webs.
View Article and Find Full Text PDFEnviron Sci Process Impacts
December 2021
Elevated concentrations of per- and polyfluoroalkyl substances (PFAS) in drinking-water supplies are a major concern for human health. It is therefore essential to understand factors that affect PFAS concentrations in surface water and groundwater and the transformation of perfluoroalkyl acid (PFAA) precursors that degrade into terminal compounds. Surface-water/groundwater exchange can occur along the flow path downgradient from PFAS point sources and biogeochemical conditions can change rapidly at these exchange boundaries.
View Article and Find Full Text PDFDrinking water concentrations of per- and polyfluoroalkyl substances (PFAS) exceed provisional guidelines for millions of Americans. Data on private well PFAS concentrations are limited in many regions and monitoring initiatives are costly and time-consuming. Here we examine modeling approaches for predicting private wells likely to have detectable PFAS concentrations that could be used to prioritize monitoring initiatives.
View Article and Find Full Text PDFWater supplies for millions of U.S. individuals exceed maximum contaminant levels for per- and polyfluoroalkyl substances (PFAS).
View Article and Find Full Text PDFHundreds of public water systems across the United States have been contaminated by the use of aqueous film-forming foams (AFFF) containing per- and polyfluoroalkyl substances (PFAS) during firefighting and training activities. Prior work shows AFFF contain hundreds of polyfluoroalkyl precursors missed by standard methods. However, the most abundant precursors in AFFF remain uncertain, and mixture contents are confidential business information, hindering proactive management of PFAS exposure risks.
View Article and Find Full Text PDFThis study examined water quality, naturally-occurring radioactive materials (NORM), major ions, trace metals, and well flow data for water used and produced from start-up to operation of an oil and gas producing hydraulically-fractured well (horizontal) in the Denver-Julesburg (DJ) Basin in northeastern Colorado. Analysis was conducted on the groundwater used to make the fracturing fluid, the fracturing fluid itself, and nine flowback/produced water samples over 220days of operation. The chemical oxygen demand of the wastewater produced during operation decreased from 8200 to 2500mg/L, while the total dissolved solids (TDS) increased in this same period from 14,200 to roughly 19,000mg/L.
View Article and Find Full Text PDF