Publications by authors named "Brice Sid"

Background: Proliferation of hepatic stellate cells (HSCs) plays a pivotal role in the progression of liver fibrosis consequent to chronic liver injury. Silibinin, a flavonoid compound, has been shown to possess anti-fibrogenic effects in animal models of liver fibrosis. This was attributed to an inhibition of cell proliferation of activated HSCs.

View Article and Find Full Text PDF

Background: Proliferation of hepatic stellate cells (HSCs) play pivotal role in the progression of hepatic fibrosis consequent to chronic liver injury. Silibinin (SBN), a flavonoid compound, has shown to possess cell cycle arresting potential against many actively proliferating cancers cell lines. The objective of this study was to evaluate the anti-proliferative and cell cycle arresting properties of SBN in rapidly proliferating human hepatic stellate LX-2 cell line.

View Article and Find Full Text PDF

Hepatocellular carcinoma is one of the most frequent tumor types worldwide and oxidative stress represents a major risk factor in pathogenesis of liver diseases leading to HCC. Nuclear factor erythroid 2-related factor (Nrf2) is a transcription factor activated by oxidative stress that governs the expression of many genes which constitute the antioxidant defenses of the cell. In addition, oxidative stress activates AMP-activated protein kinase (AMPK), which has emerged in recent years as a kinase that controls the redox-state of the cell.

View Article and Find Full Text PDF

Catalase is an antioxidant enzyme that catalyzes mainly the transformation of hydrogen peroxide into water and oxygen. Although catalase is frequently down-regulated in tumors the underlying mechanism remains unclear. Few transcription factors have been reported to directly bind the human catalase promoter.

View Article and Find Full Text PDF

Understanding the mechanisms triggering hepatogenic differentiation of stem/progenitor cells would be useful for studying postnatal liver regeneration and development of liver cell therapies. Many evidences support the involvement of Sox9 transcription factor in liver development. Here, we investigate the possibility of liver mesenchymal stem/progenitor cells to constitutively express Sox9 by using reverse transcription-quantitative polymerase chain reaction, immunocytochemistry, and western blotting.

View Article and Find Full Text PDF

Chronic alcohol consumption is a well-known risk factor for liver disease. Progression of alcohol-induced liver disease (ALD) is a multifactorial process that involves a number of genetic, nutritional and environmental factors. Experimental and clinical studies increasingly show that oxidative damage induced by ethanol contributes in many ways to the pathogenesis of alcohol hepatoxicity.

View Article and Find Full Text PDF

Targeting the altered redox status of cancer cells is emerging as an interesting approach to potentiate chemotherapy. However, to maximize the effectiveness of this strategy and define the correct chemotherapeutic associations, it is important to understand the biological consequences of chronically exposing cancer cells to reactive oxygen species (ROS). Using an H(2)O(2)-generating system, we selected a ROS-resistant MCF-7 breast cancer cell line, namely Resox cells.

View Article and Find Full Text PDF

Cancer cells generally exhibit high levels of reactive oxygen species (ROS) that stimulate cell proliferation and promote genetic instability. Since this biochemical difference between normal and cancer cells represents a specific vulnerability that can be selectively targeted for cancer therapy, various ROS-generating agents are currently in clinical trials, either as single agents or in combination with standard therapy. However, little is known about the potential consequences of an increased oxidative stress for the efficacy of standard chemotherapeutic agents.

View Article and Find Full Text PDF

Because reactive oxygen species (ROS) are naturally produced as a consequence of aerobic metabolism, cells have developed a sophisticated set of antioxidant molecules to prevent the toxic accumulation of these species. However, compared with normal cells, malignant cells often exhibit increased levels of intracellular ROS and altered levels of antioxidant molecules. The resulting endogenous oxidative stress favors tumor growth by promoting genetic instability, cell proliferation and angiogenesis.

View Article and Find Full Text PDF

This study was undertaken to investigate whether the mechanism of increased Na(+)-K(+)-2Cl(-) (NKCC1) cotransporter activity by osmotic shrinkage involved AMP-activated protein kinase (AMPK) activation. AMPK was found to phosphorylate a recombinant GST-dogfish (1-260) NKCC1 fragment at Ser38 and Ser214, corresponding to Ser77 and Ser242 in human NKCC1, respectively. Incubation of human erythrocytes with 20 microM A769662 AMPK activator increased Ser242 NKCC1 phosphorylation but did not stimulate (86)Rb(+) uptake.

View Article and Find Full Text PDF

AMP-activated protein kinase (AMPK), a known regulator of cellular and systemic energy balance, is now recognized to control cell division, cell polarity and cell migration, all of which depend on the actin cytoskeleton. Here we report the effects of A769662, a pharmacological activator of AMPK, on cytoskeletal organization and signalling in epithelial Madin-Darby canine kidney (MDCK) cells. We show that AMPK activation induced shortening or radiation of stress fibers, uncoupling from paxillin and predominance of cortical F-actin.

View Article and Find Full Text PDF

Previous studies reported that modification in the expression of the matricellular multidomain glycoprotein thrombospondin-1 (TSP-1) could play a critical role in the control of tumor progression and metastasis development. The function of this multimodular protein in cancers appears highly dependent on the cellular context and thus remains to date very difficult to accurately characterize. Controversial results indeed exist reporting either pro- or anti-invasive properties of TSP-1.

View Article and Find Full Text PDF

The scavenger receptor low-density lipoprotein receptor-related protein 1 (LRP-1) mediates the clearance of a variety of biological molecules from the pericellular environment, including proteinases which degrade the extracellular matrix in cancer progression. However, its accurate functions remain poorly explored and highly controversial. Here we show that LRP-1 silencing by RNA interference results in a drastic inhibition of cell invasion despite a strong stimulation of pericellular matrix metalloproteinase 2 and urokinase-type plasminogen activator proteolytic activities.

View Article and Find Full Text PDF

The low density lipoprotein receptor-related protein (LRP), a large scavenger receptor reported to mediate the uptake and degradation of various ligands, emerges as a promising receptor for targeting the invasive behaviour of human cancer cells. However, the accurate function of LRP during tumor invasion seems to be highly dependent on cellular context and remains controversial. The expression patterns of both this receptor and the main proteolytic systems involved in cell invasion were examined in two follicular thyroid carcinoma cell lines exhibiting different invasive phenotypes.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionas2cuorsvv0s0hvsj8p7c7r897oq25qt): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once