Publications by authors named "Brice Roux"

Background: Bacteria of the genus Xanthomonas cause economically significant diseases in various crops. Their virulence is dependent on the translocation of type III effectors (T3Es) into plant cells by the type III secretion system (T3SS), a process regulated by the master response regulator HrpG. Although HrpG has been studied for over two decades, its regulon across diverse Xanthomonas species, particularly beyond type III secretion, remains understudied.

View Article and Find Full Text PDF

Xanthomonas campestris pv. campestris (Xcc) is a seed-transmitted vascular pathogen causing black rot disease on cultivated and wild Brassicaceae. Xcc enters the plant tissues preferentially via hydathodes, which are organs localized at leaf margins.

View Article and Find Full Text PDF

STOP1, an Arabidopsis transcription factor favouring root growth tolerance against Al toxicity, acts in the response to iron under low Pi (-Pi). Previous studies have shown that Al and Fe regulate the stability and accumulation of STOP1 in roots, and that the STOP1 protein is sumoylated by an unknown E3 ligase. Here, using a forward genetics suppressor screen, we identified the E3 SUMO (small ubiquitin-like modifier) ligase SIZ1 as a modulator of STOP1 signalling.

View Article and Find Full Text PDF
Article Synopsis
  • * ALIX, an ESCRT-III-associated protein, directly binds to ABA receptors in late endosomes and promotes their degradation; impairment of ALIX leads to increased levels of these receptors and heightened ABA sensitivity in plants.
  • * The study highlights a feedback mechanism in which ABA triggers ALIX to manage the stability of PYR/PYL/RCAR receptors, influencing plant responses to water loss and stomatal closure.
View Article and Find Full Text PDF

Understanding the development of multicellular organisms requires the identification of regulators, notably transcription factors, and specific transcript populations associated with tissue differentiation. Laser capture microdissection (LCM) is one of the techniques that enable the analysis of distinct tissues or cells within an organ. Coupling this technique with RNA sequencing (RNAseq) makes it extremely powerful to obtain a genome-wide and dynamic view of gene expression.

View Article and Find Full Text PDF

Nod factors (NFs) are lipochitooligosaccharidic signal molecules produced by rhizobia, which play a key role in the rhizobium-legume symbiotic interaction. In this study, we analyzed the gene expression reprogramming induced by purified NF (4 and 24 h of treatment) in the root epidermis of the model legume Medicago truncatula Tissue-specific transcriptome analysis was achieved by laser-capture microdissection coupled to high-depth RNA sequencing. The expression of 17,191 genes was detected in the epidermis, among which 1,070 were found to be regulated by NF addition, including previously characterized NF-induced marker genes.

View Article and Find Full Text PDF

Background: The bacterial species Xanthomonas campestris infects a wide range of Brassicaceae. Specific pathovars of this species cause black rot (pv. campestris), bacterial blight of stock (pv.

View Article and Find Full Text PDF

In plants, host response to pathogenic microbes is driven both by microbial perception and detection of modified-self. The Xanthomonas campestris effector protein AvrAC/XopAC uridylylates the Arabidopsis BIK1 kinase to dampen basal resistance and thereby promotes bacterial virulence. Here we show that PBL2, a paralog of BIK1, is similarly uridylylated by AvrAC.

View Article and Find Full Text PDF

Rhizobium-induced root nodules are specialized organs for symbiotic nitrogen fixation. Indeterminate-type nodules are formed from an apical meristem and exhibit a spatial zonation which corresponds to successive developmental stages. To get a dynamic and integrated view of plant and bacterial gene expression associated with nodule development, we used a sensitive and comprehensive approach based upon oriented high-depth RNA sequencing coupled to laser microdissection of nodule regions.

View Article and Find Full Text PDF

Xanthomonas campestris pv. campestris (Xcc) colonizes the vascular system of Brassicaceae and ultimately causes black rot. In susceptible Arabidopsis plants, XopAC type III effector inhibits by uridylylation positive regulators of the PAMP-triggered immunity such as the receptor-like cytoplasmic kinases (RLCK) BIK1 and PBL1.

View Article and Find Full Text PDF

Xanthomonas campestris pv. campestris is the causal agent of black rot on Brassicaceae. The draft genome sequences of three strains (CN14, CN15, and CN16) that are highly aggressive on Arabidopsis have been determined.

View Article and Find Full Text PDF
Article Synopsis
  • The bacterium Xanthomonas campestris pv. campestris causes black rot in Brassicaceae and alters the immunity of its host plants, particularly Arabidopsis thaliana.
  • Researchers analyzed a diversity of 45 strains to explore the genetic factors behind their pathogenicity, discovering 3 effector genes linked to disease symptoms and a range of type III secreted proteins across the strains.
  • The study emphasizes the intricate genetic interactions involved in pathogenicity, suggesting that effective plant protection strategies require a deeper understanding of these variations beyond model strains.
View Article and Find Full Text PDF

The availability of next-generation sequences of transcripts from prokaryotic organisms offers the opportunity to design a new generation of automated genome annotation tools not yet available for prokaryotes. In this work, we designed EuGene-P, the first integrative prokaryotic gene finder tool which combines a variety of high-throughput data, including oriented RNA-Seq data, directly into the prediction process. This enables the automated prediction of coding sequences (CDSs), untranslated regions, transcription start sites (TSSs) and non-coding RNA (ncRNA, sense and antisense) genes.

View Article and Find Full Text PDF

We present a new wave-front sensing technique for adaptive optics based on use of several wave-front sensors dedicated to the sensing of a different range of spatial frequencies. We call it a hierarchical wave-front sensor. We present the concept of a hierarchical wave-front sensor and apply it to the Shack-Hartmann sensor.

View Article and Find Full Text PDF

Classical adaptive optics (AO) is now a widespread technique for high-resolution imaging with astronomical ground-based telescopes. It generally uses simple and efficient control algorithms. Multiconjugate adaptive optics (MCAO) is a more recent and very promising technique that should extend the corrected field of view.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session2c01et94hrugbsp5k2i1piqq6id9d5lq): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once