Publications by authors named "Brice Rotureau"

Article Synopsis
  • The study investigates the presence of African trypanosomes in the skin of individuals at risk for gambiense Human African Trypanosomiasis (gHAT) in Guinea, finding that a significant number of seropositive individuals carry the parasites in their dermal layers.
  • Out of nearly 19,000 screened participants, 96 were included, revealing dermatological symptoms to be more common in seropositive individuals compared to seronegative ones.
  • Follow-up showed a decrease in skin parasite detection post-treatment, but a notable percentage of untreated seropositive individuals continued to test positive, highlighting potential challenges in achieving gHAT elimination.
View Article and Find Full Text PDF

Background: Serological screening tests play a crucial role to diagnose gambiense human African trypanosomiasis (gHAT). Presently, they preselect individuals for microscopic confirmation, but in future "screen and treat" strategies they will identify individuals for treatment. Variability in reported specificities, the development of new rapid diagnostic tests (RDT) and the hypothesis that malaria infection may decrease RDT specificity led us to evaluate the specificity of 5 gHAT screening tests.

View Article and Find Full Text PDF

African trypanosomiases and leishmaniases are significant neglected tropical diseases (NTDs) that affect millions globally, with severe health and socio-economic consequences, especially in endemic regions. Understanding the pathogenesis and dissemination of Trypanosoma brucei and Leishmania spp. parasites within their hosts is pivotal for the development of effective interventions.

View Article and Find Full Text PDF

Strategies to detect Human African Trypanosomiasis (HAT) cases rely on serological screening of populations exposed to trypanosomes. In Guinea, mass medical screening surveys performed with the Card Agglutination Test for Trypanosomiasis have been progressively replaced by door-to-door approaches using Rapid Diagnostic Tests (RDTs) since 2016. However, RDTs availability represents a major concern and medical teams must often adapt, even in the absence of prior RDT performance evaluation.

View Article and Find Full Text PDF
Article Synopsis
  • The mechanisms of how Trypanosoma brucei colonize tissues in mammalian hosts are not well understood, particularly their strategies for extravascular growth.
  • FLAM8, a flagellar protein, plays a crucial role as a docking site for CARP3, influencing signaling despite being non-essential for the parasite's basic survival in vitro.
  • FLAM8 is vital for effective dissemination within host tissues, as parasites lacking FLAM8 struggle to migrate across endothelial barriers and are less effective in maintaining extravascular populations, particularly in skin tissues.
View Article and Find Full Text PDF
Article Synopsis
  • A study in Cameroon investigated trypanosome infections in 291 domestic and wild animals to update existing epidemiological data on human African trypanosomiasis (HAT).
  • Researchers found that 47.1% of animals had at least one trypanosome species, with significant infections in both blood (65.7%) and skin (23.4%).
  • The findings underline the importance of animal reservoirs, especially pigs and wild animals, in the transmission of Trypanosoma b. gambiense, suggesting that these factors should be integrated into HAT control strategies.
View Article and Find Full Text PDF

Background: To achieve elimination of Human African Trypanosomiasis (HAT) caused by Trypanosoma brucei gambiense (gHAT), the development of highly sensitive diagnostics is needed. We have developed a CRISPR based diagnostic for HAT using SHERLOCK (Specific High-sensitivity Enzymatic Reporter unLOCKing) that is readily adaptable to a field-based setting.

Methods: We adapted SHERLOCK for the detection of T.

View Article and Find Full Text PDF

Signaling from ciliary microdomains controls developmental processes in metazoans. Trypanosome transmission requires development and migration in the tsetse vector alimentary tract. Flagellar cAMP signaling has been linked to parasite social motility (SoMo) in vitro, yet uncovering control of directed migration in fly organs is challenging.

View Article and Find Full Text PDF

The life cycle alternates between the tsetse fly vector and the mammalian host. In the insect, undergoes several developmental stages until it reaches the salivary gland and differentiates into the metacyclic form, which is capable of infecting the next mammalian host. Mammalian infectivity is dependent on expression of the metacyclic variant surface glycoprotein genes as the cells develop into mature metacyclics.

View Article and Find Full Text PDF

The single-celled parasite Trypanosoma brucei is transmitted by hematophagous tsetse flies. Life cycle progression from mammalian bloodstream form to tsetse midgut form and, subsequently, infective salivary gland form depends on complex developmental steps and migration within different fly tissues. As the parasite colonizes the glucose-poor insect midgut, ATP production is thought to depend on activation of mitochondrial amino acid catabolism via oxidative phosphorylation (OXPHOS).

View Article and Find Full Text PDF

The long and complex Trypanosoma brucei development in the tsetse fly vector culminates when parasites gain mammalian infectivity in the salivary glands. A key step in this process is the establishment of monoallelic variant surface glycoprotein (VSG) expression and the formation of the VSG coat. The establishment of VSG monoallelic expression is complex and poorly understood, due to the multiple parasite stages present in the salivary glands.

View Article and Find Full Text PDF

Microorganisms must make the right choice for nutrient consumption to adapt to their changing environment. As a consequence, bacteria and yeasts have developed regulatory mechanisms involving nutrient sensing and signaling, known as "catabolite repression," allowing redirection of cell metabolism to maximize the consumption of an energy-efficient carbon source. Here, we report a new mechanism named "metabolic contest" for regulating the use of carbon sources without nutrient sensing and signaling.

View Article and Find Full Text PDF

The single flagellum of African trypanosomes is essential in multiple aspects of the parasites' development. The FLAgellar Member 8 protein (FLAM8), localised to the tip of the flagellum in cultured insect forms of Trypanosoma brucei, was identified as a marker of the locking event that controls flagellum length. Here, we investigated whether FLAM8 could also reflect the flagellum maturation state in other parasite cycle stages.

View Article and Find Full Text PDF

One health (OH) approaches have increasingly been used in the last decade in the fight against zoonotic neglected tropical diseases (NTDs). However, descriptions of such collaborations between the human, animal and environmental health sectors are still limited for French-speaking tropical countries. The objective of the current survey was to explore the diversity of OH experiences applied to research, surveillance and control of NTDs by scientists from French-speaking countries, and discuss their constraints and benefits.

View Article and Find Full Text PDF

Multicellular organisms assemble cilia and flagella of precise lengths differing from one cell to another, yet little is known about the mechanisms governing these differences. Similarly, protists assemble flagella of different lengths according to the stage of their life cycle. assembles flagella of 3 to 30 µm during its development in the tsetse fly.

View Article and Find Full Text PDF

Background: The diagnosis of gambiense human African trypanosomiasis (gHAT) typically involves 2 steps: a serological screen, followed by the detection of living trypanosome parasites in the blood or lymph node aspirate. Live parasites can, however, remain undetected in some seropositive individuals, who, we hypothesize, are infected with Trypanosoma brucei gambiense parasites in their extravascular dermis.

Methods: To test this hypothesis, we conducted a prospective observational cohort study in the gHAT focus of Forecariah, Republic of Guinea.

View Article and Find Full Text PDF

Background: Trypanosoma brucei exhibits a complex life-cycle alternating between tsetse flies and mammalian hosts. When parasites infect the fly, cells differentiate to adapt to life in various tissues, which is accompanied by drastic morphological and biochemical modifications especially in the proventriculus. This key step represents a bottleneck for salivary gland infection.

View Article and Find Full Text PDF

Objective: In tropical Africa, trypanosomiasis is present in endemic areas with many other diseases including malaria. Because malaria vectors become more anthropo-zoophilic under the current insecticide pressure, they may be exposed to trypanosome parasites. By collecting mosquitoes in six study sites with distinct malaria infection prevalence and blood sample from cattle, we tried to assess the influence of malaria-trypanosomiasis co-endemicity on the vectorial capacity of Anopheles.

View Article and Find Full Text PDF

During a blood meal, female Anopheles mosquitoes are potentially exposed to diverse microbes in addition to the malaria parasite, Plasmodium. Human and animal African trypanosomiases are frequently co-endemic with malaria in Africa. It is not known whether exposure of Anopheles to trypanosomes influences their fitness or ability to transmit Plasmodium.

View Article and Find Full Text PDF

Intravital microscopy allows the visualisation of how pathogens interact with host cells and tissues in living animals in real time. This method has enabled key advances in our understanding of host-parasite interactions under physiological conditions. A combination of genetics, microscopy techniques, and image analysis have recently facilitated the understanding of biological phenomena in living animals at cellular and subcellular resolution.

View Article and Find Full Text PDF
Article Synopsis
  • Human African trypanosomiasis (HAT), or African sleeping sickness, is a deadly disease primarily found in sub-Saharan Africa, showing signs of potential elimination but historically at risk of reemergence.
  • Research indicates that asymptomatic infections may act as a hidden source for transmission due to skin-dwelling parasites, challenging previous assumptions about disease spread.
  • The study calls for a reevaluation of current treatment policies, suggesting that asymptomatic cases are significant enough to sustain transmission and should not be ignored.
View Article and Find Full Text PDF

In the glucose-free environment that is the midgut of the tsetse fly vector, the procyclic form of Trypanosoma brucei primarily uses proline to feed its central carbon and energy metabolism. In these conditions, the parasite needs to produce glucose 6-phosphate (G6P) through gluconeogenesis from metabolism of non-glycolytic carbon source(s). We showed here that two phosphoenolpyruvate-producing enzymes, PEP carboxykinase (PEPCK) and pyruvate phosphate dikinase (PPDK) have a redundant function for the essential gluconeogenesis from proline.

View Article and Find Full Text PDF

Several models have been proposed to explain how eukaryotic cells control the length of their cilia and flagella. Here, we investigated this process in the protist Trypanosoma brucei, an excellent model system for cells with stable cilia like photoreceptors or spermatozoa. We show that the total amount of intraflagellar transport material (IFT, the machinery responsible for flagellum construction) increases during flagellum elongation, consistent with constant delivery of precursors and the previously reported linear growth.

View Article and Find Full Text PDF

The bloodstream forms of Trypanosoma brucei (BSF), the parasite protist causing sleeping sickness, primarily proliferate in the blood of their mammalian hosts. The skin and adipose tissues were recently identified as additional major sites for parasite development. Glucose was the only carbon source known to be used by bloodstream trypanosomes to feed their central carbon metabolism, however, the metabolic behaviour of extravascular tissue-adapted parasites has not been addressed yet.

View Article and Find Full Text PDF