Publications by authors named "Brice Ronsin"

Odour processing exhibits multiple parallels between vertebrate and invertebrate olfactory systems. Insects, in particular, have emerged as relevant models for olfactory studies because of the tractability of their olfactory circuits. Here, we used fast calcium imaging to track the activity of projection neurons in the honey bee antennal lobe (AL) during olfactory stimulation at high temporal resolution.

View Article and Find Full Text PDF

The neuropeptide F (NPF) and its short version (sNPF) mediate food- and stress-related responses in solitary insects. In the honeybee, a social insect where food collection and defensive responses are socially regulated, only sNPF has an identified receptor. Here we increased artificially sNPF levels in honeybee foragers and studied the consequences of this manipulation in various forms of appetitive and aversive responsiveness.

View Article and Find Full Text PDF

How social interactions influence cognition is a fundamental question, yet rarely addressed at the neurobiological level. It is well established that the presence of conspecifics affects learning and memory performance, but the neural basis of this process has only recently begun to be investigated. In the fruit fly Drosophila melanogaster, the presence of other flies improves retrieval of a long-lasting olfactory memory.

View Article and Find Full Text PDF

Adult stem cells must continuously fine-tune their behavior to regenerate damaged organs and avoid tumors. While several signaling pathways are well known to regulate somatic stem cells, the underlying mechanisms remain largely unexplored. Here, we demonstrate a cell-intrinsic role for the OvoL family transcription factor, Shavenbaby (Svb), in balancing self-renewal and differentiation of Drosophila intestinal stem cells.

View Article and Find Full Text PDF

The dopamine D2 receptor (D2R) mediates ligand-biased signaling with potential therapeutic implications. However, internalization, choice of endocytic routes, and degradation of the D2R in lysosomes may also participate in agonist-directed trafficking. We developed bioluminescence resonance energy transfer (BRET) assays that measure relative distances between Renilla luciferase8-tagged D2R and green fluorescent protein 2 (GFP2)-tagged K-Ras (plasma membrane marker), and between luciferase8-tagged D2R and GFP2-Rab5 (early), GFP2-Rab4 (recycling), or GFP2-Rab7 (late) endosomal markers.

View Article and Find Full Text PDF

Neural progenitors produce neurons whose identities can vary as a function of the time that specification occurs. Here, we describe the heterochronic specification of two photoreceptor (PhR) subtypes in the zebrafish pineal gland. We find that accelerating PhR specification by impairing Notch signaling favors the early fate at the expense of the later fate.

View Article and Find Full Text PDF

Dominant optic atrophy (DOA) is because of mutations in the mitochondrial protein OPA1. The disease principally affects retinal ganglion cells, whose axons degenerate leading to vision impairments, and sometimes other neuronal phenotypes. The exact mechanisms underlying DOA pathogenesis are not known.

View Article and Find Full Text PDF

Left-right (L/R) asymmetries in the brain are thought to underlie lateralised cognitive functions. Understanding how neuroanatomical asymmetries are established has been achieved through the study of the zebrafish epithalamus. Morphological symmetry in the epithalamus is broken by leftward migration of the parapineal, which is required for the subsequent elaboration of left habenular identity; the habenular nuclei flank the midline and show L/R asymmetries in marker expression and connectivity.

View Article and Find Full Text PDF