The Antarctic continent reached its current polar location ~83 Ma and became shrouded by ice sheets ~34 Ma, coincident with dramatic global cooling at the Eocene-Oligocene boundary. However, it is not known whether the first Antarctic glaciers formed immediately prior to this or were present significantly earlier. Here we show that mountain glaciers were likely present in the Transantarctic Mountains during the Late Palaeocene (~60-56 Ma) and middle Eocene (~48-40 Ma).
View Article and Find Full Text PDFThe Younger Dryas (YD) was a period of rapid climate cooling that occurred at the end of the last glaciation. Here, we present the first palaeoglacier-derived reconstruction of YD precipitation across Europe, determined from 122 reconstructed glaciers and proxy atmospheric temperatures. Positive precipitation anomalies (YD versus modern) are found along much of the western seaboard of Europe and across the Mediterranean.
View Article and Find Full Text PDFIn Greenland, free-living red coralline algae contribute to and dominate marine habitats along the coastline. Lithothamnion glaciale dominates coralline algae beds in many regions of the Arctic, but never in Godthåbsfjord, Greenland, where Clathromorphum sp. is dominant.
View Article and Find Full Text PDFGeometries of Early Pleistocene [2.58 to 0.78 million years (Ma) ago] ice sheets in northwest Europe are poorly constrained but are required to improve our understanding of past ocean-atmosphere-cryosphere coupling.
View Article and Find Full Text PDFIce streams drain large portions of ice sheets and play a fundamental role in governing their response to atmospheric and oceanic forcing, with implications for sea-level change. The mechanisms that generate ice stream flow remain elusive. Basal sliding and/or bed deformation have been hypothesized, but ice stream beds are largely inaccessible.
View Article and Find Full Text PDF