Introduction: Memory-associated neural circuits produce oscillatory events including theta bursts (TBs), sleep spindles (SPs), and slow waves (SWs) in sleep electroencephalography (EEG). Changes in the "coupling" of these events may indicate early Alzheimer's disease (AD) pathogenesis.
Methods: We analyzed 205 aging adults using single-channel sleep EEG, cerebrospinal fluid (CSF) AD biomarkers, and Clinical Dementia Rating® (CDR®) scale.
Background: Data from human studies suggest that immune dysregulation is associated with Alzheimer's disease (AD) pathology and cognitive decline and that neurites may be affected early in the disease trajectory. Data from animal studies further indicate that dysfunction in astrocytes and inflammation may have a pivotal role in facilitating dendritic damage, which has been linked with negative cognitive outcomes. To elucidate these relationships further, we have examined the relationship between astrocyte and immune dysregulation, AD-related pathology, and neuritic microstructure in AD-vulnerable regions in late life.
View Article and Find Full Text PDFIntroduction: Non-amnestic presentations of neurodegenerative dementias, including posterior- and visual-predominant cognitive forms, are under-recognized. Specific screening measures for posterior cortical symptoms could allow for earlier, more accurate diagnosis and directed treatment.
Methods: Based on clinical experience with posterior cortical atrophy evaluations, high-yield screening questions were collected and organized into a 15-item self-report questionnaire, titled the Colorado Posterior Cortical Questionnaire (CPC-Q).
Slow wave activity (SWA) during sleep is associated with synaptic regulation and memory processing functions. Each cycle of non-rapid-eye-movement (NREM) sleep demonstrates a waxing and waning amount of SWA during the transitions between stages N2 and N3 sleep, and the deeper N3 sleep is associated with an increased density of SWA. Further, SWA is an amalgam of different types of slow waves, each identifiable by their temporal coupling to spindle subtypes with distinct physiological features.
View Article and Find Full Text PDFStudy Objectives: Slow wave and spindle coupling supports memory consolidation, and loss of coupling is linked with cognitive decline and neurodegeneration. Coupling is proposed to be a possible biomarker of neurological disease, yet little is known about the different subtypes of coupling that normally occur throughout human development and aging. Here we identify distinct subtypes of spindles within slow wave upstates and describe their relationships with sleep stage across the human lifespan.
View Article and Find Full Text PDFAstrocytes play a formative role in memory consolidation during physiological conditions; when dysregulated, astrocytes release glial fibrillary acidic protein (GFAP), which has been linked with negative memory outcomes in animal studies. We examined the association between blood GFAP, memory, and white matter (WM) integrity, accounting for blood markers of AD pathology (i.e.
View Article and Find Full Text PDFToxic leukoencephalopathy (TL) is a disorder of brain white matter caused by exposure to leukotoxic agents. Magnetic resonance imaging (MRI) can readily identify this syndrome, and, together with diffusion tensor imaging, MRI continues to offer important insights into its nature. Since the first formal description of TL in 2001, many new leukotoxic disorders have been recognized, and the range of leukotoxins has expanded to include more therapeutic drugs, drugs of abuse, and environmental insults.
View Article and Find Full Text PDF