Background And Aims: Enzymes belonging to the RNase T2 family are essential for normal rRNA turnover in eukaryotes. In Arabidopsis thaliana, this function is performed by RNS2. The null mutant rns2-2 has increased rRNA half-life and constitutive autophagy.
View Article and Find Full Text PDFLocalization of the RNase RNS2 to the vacuole via a C-terminal targeting signal is essential for its function in rRNA degradation and homeostasis. RNase T2 ribonucleases are highly conserved enzymes present in the genomes of nearly all eukaryotes and many microorganisms. Their constitutive expression in different tissues and cell types of many organisms suggests a housekeeping role in RNA homeostasis.
View Article and Find Full Text PDFRibosomes account for a majority of the cell's RNA and much of its protein and represent a significant investment of cellular resources. The turnover and degradation of ribosomes has been proposed to play a role in homeostasis and during stress conditions. Mechanisms for the turnover of rRNA and ribosomal proteins have not been fully elucidated.
View Article and Find Full Text PDFA combined strategy of phosphate (Pi) remobilization from internal and external RNA sources seems to be conserved in plants exposed to Pi starvation. Thus far, the only ribonucleases (RNases) reported to be induced in Nicotiana alata undergoing Pi deprivation are extracellular S-like RNase NE and NnSR1. NnSR1 is a class III non S-RNase of unknown subcellular location.
View Article and Find Full Text PDFAutophagy is a macromolecular degradation pathway by which cells recycle their contents as a developmental process, housekeeping mechanism, and response to environmental stress. In plants, autophagy involves the sequestration of cargo to be degraded, transport to the cell vacuole in a double-membrane bound autophagosome, and subsequent degradation by lytic enzymes. Autophagy has generally been considered to be a non-selective mechanism of degradation.
View Article and Find Full Text PDF