NG2-glia alters its dynamics in response to L-DOPA-induced dyskinesia. In these animals, striatal NG2-glia density was reduced with cells presenting activated phenotype while doxycycline antidyskinetic therapy promotes a return to NG2-glia cell density and protein to a not activated state.
View Article and Find Full Text PDFAstrocyte heterogeneity is increasingly recognized, but still little is known about juxtavascular astrocytes with their somata directly adjacent to blood vessels, despite their importance after brain injury. As juxtavascular astrocytes originate from common progenitor cells, that is, have a clonal origin, they may intrinsically differ from other, non-juxtavascular astrocytes. To explore this, we examined the electrophysiological properties of these groups of astrocytes and the underlying ion channels.
View Article and Find Full Text PDFMesenchymal stem cell (MSC)-secreted factors have been shown to significantly promote oligodendrogenesis from cultured primary adult neural stem cells (aNSCs) and oligodendroglial precursor cells (OPCs). Revealing underlying mechanisms of how aNSCs can be fostered to differentiate into a specific cell lineage could provide important insights for the establishment of novel neuroregenerative treatment approaches aiming at myelin repair. However, the nature of MSC-derived differentiation and maturation factors acting on the oligodendroglial lineage has not been identified thus far.
View Article and Find Full Text PDFDetermining the origin of different glial subtypes is crucial to understand glial heterogeneity, and to enhance our knowledge of glial and progenitor cell behavior in embryos and adults. NG2-glia are homogenously distributed in a grid-like manner in both, gray and white matter of the adult brain. While some NG2-glia in the CNS are responsible for the generation of mature oligodendrocytes (OPCs), most of them do not differentiate and they can proliferate outside of adult neurogenic niches.
View Article and Find Full Text PDFBesides giving rise to oligodendrocytes (the only myelin-forming cell in the Central Nervous System (CNS) in physiological conditions), Oligodendrocyte Precursor Cells (OPCs) are responsible for spontaneous remyelination after a demyelinating lesion. They are present along the mouse and human CNS, both during development and in adulthood, yet how OPC physiological behavior is modified throughout life is not fully understood. The activity of adult human OPCs is still particularly unexplored.
View Article and Find Full Text PDFNG2-glia, also known as oligodendrocyte precursor cells (OPCs), have the potential to generate new mature oligodendrocytes and thus, to contribute to tissue repair in demyelinating diseases like multiple sclerosis (MS). Once activated in response to brain damage, NG2-glial cells proliferate, and they acquire a reactive phenotype and a heterogeneous appearance. Here, we set out to investigate the distribution and phenotypic diversity of NG2-glia relative to their ontogenic origin, and whether there is a clonal NG2-glial response to lesion in an experimental autoimmune encephalomyelitis (EAE) murine model of MS.
View Article and Find Full Text PDFBackground: Cancer is a rapidly evolving, multifactorial disease that accumulates numerous genetic and epigenetic alterations. This results in molecular and phenotypic heterogeneity within the tumor, the complexity of which is further amplified through specific interactions between cancer cells. We aimed to dissect the molecular mechanisms underlying the cooperation between different clones.
View Article and Find Full Text PDFMultiple sclerosis (MS) is an autoimmune disease causing central nervous system (CNS) demyelination and axonal injury. In the last years the importance of astrocytes in MS is rapidly increasing, recognizing astrocytes as highly active players in MS pathogenesis. Usually the role assigned to astrocytes in MS lesions has been the formation of the glial scar, but now their implication during lesion formation and the immune response increasingly recognized.
View Article and Find Full Text PDFMultiple Sclerosis (MS) is a neurodegenerative disease where immune-driven demyelination occurs with inefficient remyelination, but therapies are limited, especially those to enhance repair. Here, we show that the dual phosphodiesterase (PDE)7- glycogen synthase kinase (GSK)3 inhibitor, VP3.15, a heterocyclic small molecule with good pharmacokinetic properties and safety profile, improves in vivo remyelination in mouse and increases both adult mouse and adult human oligodendrocyte progenitor cell (OPC) differentiation, in addition to its immune regulatory action.
View Article and Find Full Text PDFSulfatides are sulfoglycolipids found in the myelin sheath. The composition ratio of sulfatide molecular species changes with age, and it has also been associated with the pathogenesis of various human central nervous system diseases. However, profiling sulfatides in biological samples is difficult, due to the great variety of molecular species.
View Article and Find Full Text PDFWe characterised the expression of semaphorin (sema)3A, sema7A and their receptors in the immune and the central nervous system (CNS) at different stages of experimental autoimmune encephalomyelitis (EAE). We also studied their expression in neonatal and adult oligodendrocyte progenitor cell (OPC) and in mature oligodendrocyte cultures. Our results show that sema3A is increased in the CNS and decreased in the immune system upon EAE induction.
View Article and Find Full Text PDFMyopia is a common ocular disorder generally due to increased axial length of the eye-globe. Its extreme form high myopia (HM) is a multifactorial disease leading to retinal and scleral damage, visual impairment or loss and is an important health issue. Mutations in the endocytic receptor LRP2 gene result in Donnai-Barrow (DBS) and Stickler syndromes, both characterized by HM.
View Article and Find Full Text PDFThe importance of astrocyte heterogeneity came out as a hot topic in neurosciences especially over the last decades, when the development of new methodologies allowed demonstrating the existence of big differences in morphological, neurochemical and physiological features between astrocytes. However, although the knowledge about the biology of astrocytes is increasing rapidly, an important characteristic that remained unexplored, until the last years, has been the relationship between astrocyte lineages and cell heterogeneity. To fill this gap, a new method called StarTrack was recently developed, a powerful genetic tool that allows tracking astrocyte lineages forming cell clones.
View Article and Find Full Text PDFAnosmin-1 is the glycoprotein encoded by the KAL1 gene and part of the extracellular matrix, which was first identified as defective in human Kallmann syndrome (KS, characterised by hypogonadotropic hypogonadism and anosmia); biochemically it is a cell adhesion protein. The meticulous biochemical dissection of the anosmin-1 domains has identified which domains are necessary for the protein to bind its different partners to display its biological effects. Research in the last decade has unravelled different roles of anosmin-1 during CNS development (axon pathfinding, axonal collateralisation, cell motility and migration), some of them intimately related with the cited KS but not only with this.
View Article and Find Full Text PDFDuring the development of the cerebral cortex, Cajal-Retzius (CR) cells settle in the preplate and coordinate the precise growth of the neocortex. Indeed, CR cells migrate tangentially from specific proliferative regions of the telencephalon (for example, the cortical hem (CH)) to populate the entire cortical surface. This is a very finely tuned process regulated by an emerging number of factors that has been sequentially revealed in recent years.
View Article and Find Full Text PDFSignaling through fibroblast growth factor receptors (FGFRs) is essential for many cellular processes including proliferation and migration, as well as differentiation events such as myelination. Anosmin-1 is an extracellular matrix (ECM) glycoprotein that interacts with the fibroblast growth factor receptor 1 (FGFR1) to exert its biological actions through this receptor, although the intracellular pathways underlying anosmin-1 signaling remain largely unknown. This protein is defective in the X-linked form of Kallmann syndrome (KS) and has a prominent role in the migration of neuronal and oligodendroglial precursors.
View Article and Find Full Text PDFDuring development, oligodendrocytes are generated from oligodendrocyte precursor cells (OPCs), a cell type that is a significant proportion of the total cells (3-8%) in the adult central nervous system (CNS) of both rodents and humans. Adult OPCs are responsible for the spontaneous remyelination that occurs in demyelinating diseases like Multiple Sclerosis (MS) and they constitute an interesting source of cells for regenerative therapy in such conditions. However, there is little data regarding the neurobiology of adult OPCs isolated from mice since an efficient method to isolate them has yet to be established.
View Article and Find Full Text PDFOligodendrocytes are the myelin-forming cells in the central nervous system (CNS). These cells originate from oligodendrocyte precursor cells (OPCs) during development, and they migrate extensively from oligodendrogliogenic niches along the neural tube to colonise the entire CNS. Like many other such events, this migratory process is precisely regulated by a battery of positional and signalling cues that act via their corresponding receptors and that are expressed dynamically by OPCs.
View Article and Find Full Text PDFDuring the development of the central nervous system (CNS), oligodendrocyte precursors (OPCs) are generated in specific sites within the neural tube and then migrate to colonize the entire CNS, where they differentiate into myelin-forming oligodendrocytes. Demyelinating diseases such as multiple sclerosis (MS) are characterized by the death of these cells. The CNS reacts to demyelination and by promoting spontaneous remyelination, an effect mediated by endogenous OPCs, cells that represent approximately 5-7 % of the cells in the adult brain.
View Article and Find Full Text PDFThere are numerous studies describing the signaling mechanisms that mediate oligodendrocyte precursor cell (OPC) proliferation and differentiation, although the contribution of the cellular prion protein (PrP(c)) to this process remains unclear. PrP(c) is a glycosyl-phosphatidylinositol (GPI)-anchored glycoprotein involved in diverse cellular processes during the development and maturation of the mammalian central nervous system (CNS). Here we describe how PrP(c) influences oligodendrocyte proliferation in the developing and adult CNS.
View Article and Find Full Text PDFDuring embryonic development, the oligodendrocyte precursors (OPCs) are generated in specific oligodendrogliogenic sites within the neural tube and migrate to colonize the entire CNS. Different factors have been shown to influence the OPC migration and differentiation, including morphogens, growth factors, chemotropic molecules, and extracellular matrix proteins. Neuregulins have been shown to influence the migration of neuronal precursors as well as the movement and differentiation of Schwann cells for peripheral myelination, but their role in the motility of OPCs has not been explored.
View Article and Find Full Text PDFNewly generated olfactory receptor axons grow from the peripheral to the central nervous system aided by olfactory ensheathing cells (OECs). Thus, OEC transplantation has emerged as a promising therapy for spinal cord injuries and for other neural diseases. However, these cells do not present a uniform population, but instead a functionally heterogeneous population that exhibits a variety of responses including adhesion, repulsion, and crossover during cell-cell and cell-matrix interactions.
View Article and Find Full Text PDFSemaphorins are secreted or membrane-anchored proteins that play critical roles in neural development and adult brain plasticity. Sema4F is a transmembrane semaphorin found on glutamatergic synapses, in which it is attached to the PSD-95-scaffolding protein. Here we further examined the expression of Sema4F by raising specific antibodies.
View Article and Find Full Text PDFCellular prion protein (PrP(C)) is a glycosyl-phosphatidylinositol-anchored glycoprotein. When mutated or misfolded, the pathogenic form (PrP(SC)) induces transmissible spongiform encephalopathies. In contrast, PrP(C) has a number of physiological functions in several neural processes.
View Article and Find Full Text PDFNeural development and plasticity are regulated by neural adhesion proteins, including the polysialylated form of NCAM (PSA-NCAM). Podocalyxin (PC) is a renal PSA-containing protein that has been reported to function as an anti-adhesin in kidney podocytes. Here we show that PC is widely expressed in neurons during neural development.
View Article and Find Full Text PDF