Publications by authors named "Brianne Docter"

Previous studies have shown that nucleic acids can nucleate protein aggregation in disease-related proteins, but in other cases, they can act as molecular chaperones that prevent protein aggregation, even under extreme conditions. In this study, we describe the link between these two behaviors through a combination of electron microscopy and aggregation kinetics. We find that two different proteins become soluble under harsh conditions through oligomerization with DNA.

View Article and Find Full Text PDF

Organisms use molecular chaperones to combat the unfolding and aggregation of proteins. While protein chaperones have been widely studied, here we demonstrate that DNA and RNA exhibit potent chaperone activity in vitro Nucleic acids suppress the aggregation of classic chaperone substrates up to 300-fold more effectively than the protein chaperone GroEL. Additionally, RNA cooperates with the DnaK chaperone system to refold purified luciferase.

View Article and Find Full Text PDF

Localized synthesis of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P(2)] at clathrin coated pits (CCPs) is crucial for the recruitment of adaptors and other components of the internalization machinery, as well as for regulating actin dynamics during endocytosis. PtdIns(4,5)P(2) is synthesized from phosphatidylinositol 4-phosphate by any of three phosphatidylinositol 5-kinase type I (PIP5KI) isoforms (α, β or γ). PIP5KIβ localizes almost exclusively to the apical surface in polarized mouse cortical collecting duct cells, whereas the other isoforms have a less polarized membrane distribution.

View Article and Find Full Text PDF