Publications by authors named "Brianna M Vickerman"

Occlusive blood clots remain a significant global health challenge and result in emergencies that are main causes of death and disability worldwide. Thrombolytic agents (including tissue plasminogen activator, tPA) are the only pharmacological means to dissolve blood clots. However, these drugs have modest efficacy and severe safety concerns persist.

View Article and Find Full Text PDF

Peptide bioreporters were developed to perform multiplexed measurements of the activation of epidermal growth factor receptor kinase (EGFR), Akt kinase (Akt/protein kinase B), and proteases/peptidases in single cells. The performance characteristics of the three reporters were assessed by measuring the reporter's proteolytic stability, kinetic constants for EGFR and Akt, and dephosphorylation rate. The reporter displaying optimal performance was composed of 6-carboxyfluorescein (6-FAM) on the peptide N-terminus, an Akt substrate sequence employing a threonine phosphorylation site for Akt, followed by a tri-D arginine linker, and finally an EGFR substrate sequence bearing a phosphatase-resistant 7-()-hydroxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (L-htc) residue as the EGFR phosphorylation site.

View Article and Find Full Text PDF

More than four decades have passed since the first example of a light-activated (caged) compound was described. In the intervening years, a large number of light-responsive derivatives have been reported, several of which have found utility under a variety of in vitro conditions using cells and tissues. Light-triggered bioactivity furnishes spatial and temporal control, and offers the possibility of precision dosing and orthogonal communication with different biomolecules.

View Article and Find Full Text PDF

Protein therapeutics are a powerful class of drugs known for their selectivity and potency. However, the potential efficacy of these therapeutics is commonly offset by short circulatory half-lives and undesired action at otherwise healthy tissue. We describe herein a targeted protein delivery system that employs engineered red blood cells (RBCs) as carriers and light as the external trigger that promotes hemolysis and drug release.

View Article and Find Full Text PDF

Herein, the use of red blood cells (RBCs) as carriers of cytoplasmically interned phototherapeutic agents is described. Photolysis promotes drug release from the RBC carrier thereby providing the means to target specific diseased sites. This strategy is realized with a vitamin B12-taxane conjugate (B12-TAX), in which the drug is linked to the vitamin via a photolabile CoC bond.

View Article and Find Full Text PDF

Because small-molecule activators of adenylyl cyclases (AC) affect ACs cell-wide, it is challenging to explore the signaling consequences of AC activity emanating from specific intracellular compartments. We explored this issue using a series of engineered, optogenetic, spatially restricted, photoactivable adenylyl cyclases (PACs) positioned at the plasma membrane (PM), the outer mitochondrial membrane (OMM), and the nucleus (Nu). The biochemical consequences of brief photostimulation of PAC is primarily limited to the intracellular site occupied by the PAC.

View Article and Find Full Text PDF

The bulk cell population response to a stimulus, be it a growth factor or a cytotoxic agent, neglects the cell-to-cell variability that can serve as a friend or as a foe in human biology. Biochemical variations among closely related cells furnish the basis for the adaptability of the immune system but also act as the root cause of resistance to chemotherapy by tumors. Consequently, the ability to probe for the presence of key biochemical variables at the single-cell level is now recognized to be of significant biological and biomedical impact.

View Article and Find Full Text PDF