With the recent strive to develop novel quantum materials, including two-dimensional nanosheets, alkali-layered intercalated materials have found a new purpose as starting materials for such compounds. Enriching the library of alkali materials, we present a solid-state synthesis for preparing NaWS (1̅, No. 2) and RbWS (2/, No.
View Article and Find Full Text PDFLiquid-phase chemical exfoliation can achieve industry-scale production of two-dimensional (2D) materials for a wide range of applications. However, many 2D materials with potential applications in quantum technologies often fail to leave the laboratory setting because of their air sensitivity and depreciation of physical performance after chemical processing. We report a simple chemical exfoliation method to create a stable, aqueous, surfactant-free, superconducting ink containing phase-pure 1T'-WS monolayers that are isostructural to the air-sensitive topological insulator 1T'-WTe.
View Article and Find Full Text PDFMineralized biomaterials have been demonstrated to enhance bone regeneration compared to their non-mineralized analogs. As non-mineralized scaffolds do not perform as well as mineralized scaffolds in terms of their mechanical and surface properties, osteoconductivity and osteoinductivity, mineralization strategies are promising methods in the development of functional biomimetic bone scaffolds. In particular, the mineralization of three-dimensional (3D) scaffolds has become a promising approach for guided bone regeneration.
View Article and Find Full Text PDF