Publications by authors named "Brianna D Griffin"

Pathogen infection triggers complex signaling networks in plant cells that ultimately result in either susceptibility or resistance. We have made substantial progress in dissecting many of these signaling events, and it is becoming clear that changes in proteome composition and protein activity are major drivers of plant-microbe interactions. Here, we highlight different approaches to analyze the functional proteomes of hosts and pathogens and discuss how they have been used to further our understanding of plant disease.

View Article and Find Full Text PDF

DNA sequences capable of forming G-quadruplex (G4) structures can be predicted and mapped in plant genomes using computerized pattern search programs. Non-telomeric G4 motifs have recently been found to number in the thousands across many plant species and enriched around gene promoters, prompting speculation that they may represent a newly uncovered and ubiquitous family of cis-acting elements. Comparative analysis shows that monocots exhibit five to ten times higher G4 motif density than eudicots, but the significance of this difference has not been determined.

View Article and Find Full Text PDF