EF-hand Ca-binding proteins (CBPs), such as S100 proteins (S100s) and calmodulin (CaM), are signaling proteins that undergo conformational changes upon increasing intracellular Ca. Upon binding Ca, S100 proteins and CaM interact with protein targets and induce important biological responses. The Ca-binding affinity of CaM and most S100s in the absence of target is weak (K > 1 μM).
View Article and Find Full Text PDFThe interaction of calmodulin (CaM) with the receptor for retinol uptake, STRA6, involves an α-helix termed BP2 that is located on the intracellular side of this homodimeric transporter (Chen et al., 2016 [1]). In the absence of Ca, NMR data showed that a peptide derived from BP2 bound to the C-terminal lobe (C-lobe) of Mg-bound CaM (CaM).
View Article and Find Full Text PDFSTRA6 (stimulated by retinoic acid 6) is a 75kDa polytopic transmembrane protein that facilitates cellular retinol uptake from retinol-binding protein (RBP). Structural characterization of STRA6 from Danio rerio purified in detergent and reconstituted in amphipol A8-35 was achieved by single-particle cryo-electron microscopy (cryo-EM). This provided the first high-resolution snapshot of this protein, showing a novel topology of a tightly assembled homodimer, and an unexpected physiological association with calmodulin in addition to insights into its potential mechanism of function.
View Article and Find Full Text PDFVitamin A has diverse biological functions and is essential for human survival at every point from embryogenesis to adulthood. Vitamin A and its derivatives have been used to treat human diseases including vision diseases, skin diseases, and cancer. Both insufficient and excessive vitamin A uptake are detrimental, but how its transport is regulated is poorly understood.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Biol Lipids
November 2020
Vitamin A is an essential nutrient, critical for proper embryonic development in mammals. Both embryonic vitamin A-deficiency or -excess lead to congenital malformations or lethality in mammals, including humans. This is due to the defective transcriptional action of retinoic acid, the active form of vitamin A, that regulates in a spatial- and temporal-dependent manner the expression of genes essential for organogenesis.
View Article and Find Full Text PDFVitamin A regulates many essential mammalian biological processes, including embryonic development. β-carotene is the main source of vitamin A in the human diet. Once ingested, it is packaged into lipoproteins, predominantly low-density lipoproteins (LDL), and transported to different sites within the body, including the liver and developing tissues, where it can either be stored or metabolized to retinoids (vitamin A and its derivatives).
View Article and Find Full Text PDFβ-Carotene is an important source of vitamin A for the mammalian embryo, which depends on its adequate supply to achieve proper organogenesis. In mammalian tissues, β-carotene 15,15'-oxygenase (BCO1) converts β-carotene to retinaldehyde, which is then oxidized to retinoic acid, the biologically active form of vitamin A that acts as a transcription factor ligand to regulate gene expression. β-Carotene can also be cleaved by β-carotene 9',10'-oxygenase (BCO2) to form β-apo-10'-carotenal, a precursor of retinoic acid and a transcriptional regulator per se The mammalian embryo obtains β-carotene from the maternal circulation.
View Article and Find Full Text PDFBackground: The vitamin A precursor β-carotene (BC) promotes mammalian embryonic development by serving as a source of retinoids (vitamin A derivatives) to the developing tissues. In the Western world, increased consumption of dietary supplements, including vitamin A and BC, is common; however, the consequences of maternal high preformed vitamin A intake on embryonic uptake and metabolism of BC are poorly understood.
Objective: This study investigated vitamin A and BC metabolism in developing mouse tissues after a single BC administration to pregnant wild-type (WT) mice fed purified diets with different vitamin A concentrations.
In mammals, β-carotene-15,15'-oxygenase (BCO1) is the main enzyme that cleaves β-carotene, the most abundant vitamin A precursor, to generate retinoids (vitamin A derivatives), both in adult and developing tissues. We previously reported that, in addition to this function, BCO1 can also influence the synthesis of retinyl esters, the storage form of retinoids, in the mouse embryo at mid-gestation. Indeed, lack of embryonic BCO1 impaired both lecithin-dependent and acyl CoA-dependent retinol esterification, mediated by lecithin:retinol acyltransferase (LRAT) and acyl CoA:retinol acyltransferase (ARAT), respectively.
View Article and Find Full Text PDF