AbstractTropical ectotherms are thought to be especially vulnerable to climate change because they have evolved in temporally stable thermal environments and therefore have decreased tolerance for thermal variability. Thus, they are expected to have narrow thermal tolerance ranges, live close to their upper thermal tolerance limits, and have decreased thermal acclimation capacity. Although models often predict that tropical forest ectotherms are especially vulnerable to rapid environmental shifts, these models rarely include the potential for plasticity of relevant traits.
View Article and Find Full Text PDFAs rising temperatures threaten biodiversity across the globe, tropical ectotherms are thought to be particularly vulnerable due to their narrow thermal tolerance ranges. Nevertheless, physiology-based models highlighting the vulnerability of tropical organisms rarely consider the contributions of their gut microbiota, even though microbiomes influence numerous host traits, including thermal tolerance. We combined field and lab experiments to understand the response of the slender anole lizard () gut microbiome to climatic shifts of various magnitude and duration.
View Article and Find Full Text PDFIf fitness optima for a given trait differ between males and females in a population, sexual dimorphism may evolve. Sex-biased trait variation may affect patterns of habitat use, and if the microhabitats used by each sex have dissimilar microclimates, this can drive sex-specific selection on thermal physiology. Nevertheless, tests of differences between the sexes in thermal physiology are uncommon, and studies linking these differences to microhabitat use or behavior are even rarer.
View Article and Find Full Text PDFIntroduced species can become invasive, damaging ecosystems and disrupting economies through explosive population growth. One mechanism underlying population expansion in invasive populations is 'enemy release', whereby the invader experiences relaxation of agonistic interactions with other species, including parasites. However, direct observational evidence of release from parasitism during invasion is rare.
View Article and Find Full Text PDF