Serotonin reuptake inhibitor antidepressants such as fluoxetine are widely used to treat mood disorders. The mechanisms of action include an increase in extracellular level of serotonin, neurogenesis, and growth of vessels in the brain. We investigated whether fluoxetine could have broader peripheral regenerative properties.
View Article and Find Full Text PDFNeural stem cells (NSCs) reside in a defined cellular microenvironment, the niche, which supports the generation and integration of newborn neurons. The mechanisms building a sophisticated niche structure around NSCs and their functional relevance for neurogenesis are yet to be understood. In the Drosophila larval brain, the cortex glia (CG) encase individual NSC lineages in membranous chambers, organising the stem cell population and newborn neurons into a stereotypic structure.
View Article and Find Full Text PDFTransient electronics hold promise in reducing electronic waste, especially in applications that require only a limited lifetime. While various degradable electronic and physical sensing devices have been proposed, there is growing interest in the development of degradable biochemical sensors. In this work, we present the development of an organic electrochemical transistor (OECT) with degradable electrodes, printed on an eco- and bioresorbable substrate.
View Article and Find Full Text PDFSweat secreted by the human eccrine sweat glands can provide valuable biomarker information during exercise. Real-time non-invasive biomarker recordings are therefore useful for evaluating the physiological conditions of an athlete such as their hydration status during endurance exercise. This work describes a wearable sweat biomonitoring patch incorporating printed electrochemical sensors into a plastic microfluidic sweat collector and data analysis that shows the real-time recorded sweat biomarkers can be used to predict a physiological biomarker.
View Article and Find Full Text PDFThe development of fully solution-processed, biodegradable piezoelectrics is a critical step in the development of green electronics towards the worldwide reduction of harmful electronic waste. However, recent printing processes for piezoelectrics are hindered by the high sintering temperatures required for conventional perovskite fabrication techniques. Thus, a process was developed to manufacture lead-free printed piezoelectric devices at low temperatures to enable integration with eco-friendly substrates and electrodes.
View Article and Find Full Text PDFThe strong clinical demand for more accurate and personalized health monitoring technologies has called for the development of additively manufactured wearable devices. While the materials palette for additive manufacturing continues to expand, the integration of materials, designs and digital fabrication methods in a unified workflow remains challenging. In this work, a 3D printing platform is proposed for the integrated fabrication of silicone-based soft wearables with embedded piezoresistive sensors.
View Article and Find Full Text PDFNpj Flex Electron
March 2023
Transient electronics offer a promising solution for reducing electronic waste and for use in implantable bioelectronics, yet their fabrication remains challenging. We report on a scalable method that synergistically combines chemical and photonic mechanisms to sinter printed Zn microparticles. Following reduction of the oxide layer using an acidic solution, zinc particles are agglomerated into a continuous layer using a flash lamp annealing treatment.
View Article and Find Full Text PDFThe dysregulation of the hormone cortisol is related to several pathological states, and its monitoring could help prevent severe stress, fatigue, and mental diseases. While wearable antibody-based biosensors could allow real-time and simple monitoring of antigens, an accurate and low-cost antibody-based cortisol detection through electrochemical methods is considerably challenging due to its low concentration and the high ionic strength of real biofluids. Here, a label-free and fast sensor for cortisol detection is proposed based on antibody-coated organic electrochemical transistors.
View Article and Find Full Text PDFNeural stem cells (NSCs) live in an intricate cellular microenvironment supporting their activity, the niche. Whilst shape and function are inseparable, the morphogenetic aspects of niche development are poorly understood. Here, we use the formation of a glial niche to investigate acquisition of architectural complexity.
View Article and Find Full Text PDFSweat is a body fluid produced by the sweat glands and is mainly composed of water. Sweat has various functions, the two main ones being the evacuation of heat produced by the body, especially during exercise, and the maintenance of skin homeostasis. Its production is highly variable and depends on many individual and environmental factors.
View Article and Find Full Text PDFThe rapid evolution of the neuromorphic computing stimulates the search for novel brain-inspired electronic devices. Synaptic transistors are three-terminal devices that can mimic the chemical synapses while consuming low power, whereby an insulating dielectric layer physically separates output and input signals from each other. Appropriate choice of the dielectric is crucial in achieving a wide range of operation frequencies in these devices.
View Article and Find Full Text PDFIntroduction: No etiologic therapy is available for Duchenne muscular dystrophy (DMD), but mesenchymal stem cells were shown to be effective in preclinical models of DMD. The objective of this study is to investigate the effect of microfragmented fat extracted on a murine model of DMD.
Methods: Fat tissue was extracted from healthy human participants and injected IM into DMD mice.
Background: Severe sepsis has a high mortality rate. There is increasing evidence that human mesenchymal stem cells possess immunomodulatory properties in sepsis, particularly those from adipose tissue. We hypothesised that micro-fragmented human fat, obtained with minimal alteration of the stromal vascular niche, attenuates the inflammatory response and improves outcome in a murine model of sepsis.
View Article and Find Full Text PDFBackground: Skeletal muscle has the capacity to adapt to environmental changes and regenerate upon injury. To study these processes, most experimental methods use quantification of parameters obtained from images of immunostained skeletal muscle. Muscle cross-sectional area, fiber typing, localization of nuclei within the muscle fiber, the number of vessels, and fiber-associated stem cells are used to assess muscle physiology.
View Article and Find Full Text PDFBackground: Since prehistory to present times and despite a rough combat against it, malaria remains a concern for human beings. While evolutions of science and technology through times allowed for some infectious diseases eradication in the 20th century, malaria resists.
Objectives: This review aims at assessing how Internet and web technologies are used in fighting malaria.
We report a light, flexible, and low-power poly(ionic liquid)/alumina composite CO sensor. We monitor the direct-current resistance changes as a function of CO concentration and relative humidity and demonstrate fast and reversible sensing kinetics. Moreover, on the basis of the alternating-current impedance measurements we propose a sensing mechanism related to proton conduction and gas diffusion.
View Article and Find Full Text PDFFlexible high-voltage thin-film transistors (HVTFTs) operating at more than 1 kV are integrated with compliant dielectric elastomer actuators (DEA) to create a flexible array of 16 independent actuators. To allow for high-voltage operation, the HVTFT implements a zinc-tin oxide channel, a thick dielectric stack, and an offset gate. At a source-drain bias of 1 kV, the HVTFT has a 20 µA on-current at a gate voltage bias of 30 V.
View Article and Find Full Text PDFBackground: A longstanding goal in regenerative medicine is to reconstitute functional tissues or organs after injury or disease. Attention has focused on the identification and relative contribution of tissue specific stem cells to the regeneration process. Relatively little is known about how the physiological process is regulated by other tissue constituents.
View Article and Find Full Text PDFSepsis, or systemic inflammatory response syndrome, is the major cause of critical illness resulting in admission to intensive care units. Sepsis is caused by severe infection and is associated with mortality in 60% of cases. Morbidity due to sepsis is complicated by neuromyopathy, and patients face long-term disability due to muscle weakness, energetic dysfunction, proteolysis and muscle wasting.
View Article and Find Full Text PDFDuchenne muscular dystrophy (DMD) is a progressive neuromuscular disease, caused by an absence of dystrophin, inevitably leading to death. Although muscle lesions are well characterized, blood vessel alterations that may have a major impact on muscle regeneration remain poorly understood. Our aim was to elucidate alterations of the vascular network organization, taking advantage of Flk1(GFP/+) crossed with mdx mice (model for human DMD where all blood vessels express green fluorescent protein) and functional repercussions using in vivo nuclear magnetic resonance, combining arterial spin-labeling imaging of perfusion, and (31)P-spectroscopy of phosphocreatine kinetics.
View Article and Find Full Text PDFBiomed Microdevices
August 2015
This work presents a planar, longitudinal mode ultrasonic scalpel microfabricated from monocrystalline silicon wafers. Silicon was selected as the material for the ultrasonic horn due to its high speed of sound and thermal conductivity as well as its low density compared to commonly used titanium based alloys. Combined with a relatively high Young's modulus, a lighter, more efficient design for the ultrasonic scalpel can be implemented which, due to silicon batch manufacturing, can be fabricated at a lower cost.
View Article and Find Full Text PDFThis paper presents the optimization of a micro gas preconcentrator (μ-GP) system applied to atmospheric pollution monitoring, with the help of a complete modeling of the preconcentration cycle. Two different approaches based on kinetic equations are used to illustrate the behavior of the micro gas preconcentrator for given experimental conditions. The need for high adsorption flow and heating rate and for low desorption flow and detection volume is demonstrated in this paper.
View Article and Find Full Text PDFConducting polyaniline-based chemiresistors on printed polymeric micro-hotplates were developed, showing sensitive and selective detection of ammonia vapor in air. The devices consist of a fully inkjet-printed silver heater and interdigitated electrodes on a polyethylene naphthalate substrate, separated by a thin dielectric film. The integrated heater allowed operation at elevated temperatures, enhancing the ammonia sensing performance.
View Article and Find Full Text PDF