Publications by authors named "Briana J Davie"

Selective agonists for the human M and M muscarinic acetylcholine receptors (mAChRs) are attractive candidates for the treatment of cognitive disorders, such as Alzheimer's disease and schizophrenia. Past efforts to optimize a ligand for selective agonism at any one of the M-M mAChR subtypes has proven to be a significant challenge. Recently, research efforts have demonstrated that hybrid ligands may offer a potential solution to the lack of selectivity at mAChRs.

View Article and Find Full Text PDF

The field of G protein-coupled receptor drug discovery has benefited greatly from the structural and functional insights afforded by photoactivatable ligands. One G protein-coupled receptor subfamily for which photoactivatable ligands have been developed is the muscarinic acetylcholine receptor family, though, to date, all such ligands have been designed to target the orthosteric (endogenous ligand) binding site of these receptors. Herein we report the synthesis and pharmacological investigation of a novel photoaffinity label, MIPS1455 (4), designed to bind irreversibly to an allosteric site of the M1 muscarinic acetylcholine receptor; a target of therapeutic interest for the treatment of cognitive deficits.

View Article and Find Full Text PDF

Activation of the M1 muscarinic acetylcholine receptor (mAChR) is a prospective treatment for alleviating cognitive decline experienced in central nervous system (CNS) disorders. Current therapeutics indiscriminately enhance the activity of the endogenous neurotransmitter ACh, leading to side effects. BQCA is a positive allosteric modulator and allosteric agonist at the M1 mAChR that has high subtype selectivity and is a promising template from which to generate higher affinity, more pharmacokinetically viable drug candidates.

View Article and Find Full Text PDF

Since the cholinergic hypothesis of memory dysfunction was first reported, extensive research efforts have focused on elucidating the mechanisms by which this intricate system contributes to the regulation of processes such as learning, memory, and higher executive function. Several cholinergic therapeutic targets for the treatment of cognitive deficits, psychotic symptoms, and the underlying pathophysiology of neurodegenerative disorders, such as Alzheimer's disease and schizophrenia, have since emerged. Clinically approved drugs now exist for some of these targets; however, they all may be considered suboptimal therapeutics in that they produce undesirable off-target activity leading to side effects, fail to address the wide variety of symptoms and underlying pathophysiology that characterize these disorders, and/or afford little to no therapeutic effect in subsets of patient populations.

View Article and Find Full Text PDF