Publications by authors named "Briana Gross"

Adaptive differentiation of traits and underlying loci can occur at a small geographical scale if natural selection is stronger than countervailing gene flow and drift. We investigated this hypothesis using coupled quantitative genetic and genomic approaches for a wind-pollinated tree species, Quercus rubra, along the steep, narrow gradient of the Lake Superior coast that encompasses four USDA Hardiness Zones within 100 km. For the quantitative genetic component of this study, we examined phenotypic differentiation among eight populations in a common garden, measuring seed mass, germination, height, stem diameter, leaf number, specific leaf area and survival.

View Article and Find Full Text PDF

Resurrection experiments provide a unique opportunity to evaluate phenotypic and molecular evolution in response to environmental challenges. To understand the evolution of urban populations of Helianthus annuus, we compared plants from 36-year-old antecedent seed collections to modern seed collections from the same area using molecular and quantitative genetic approaches. We found 200 differentially expressed transcripts between antecedent and modern groups, and transcript expression was generally higher in modern samples as compared to antecedent samples.

View Article and Find Full Text PDF

Local adaptation is common in plants, yet characterization of its underlying genetic basis is rare in herbaceous perennials. Moreover, while many plant species exhibit intraspecific chemical defence polymorphisms, their importance for local adaptation remains poorly understood. We examined the genetic architecture of local adaptation in a perennial, obligately-outcrossing herbaceous legume, white clover (Trifolium repens).

View Article and Find Full Text PDF

Premise: During plant domestication, traits can be subject to a variety of types of selection, ranging from strong directional selection for traits such as seed or fruit size to diversifying selection for traits like color or flavor. These types of selection interact with other evolutionary processes including genetic bottlenecks and interspecific gene flow to generate different levels of genetic diversity across the genome and at target genes in domesticated lineages, but little is known about the impacts of these processes in perennial fruit crops.

Methods: We used sequence capture by hybridization to examine patterns of diversity at a suite of candidate domestication and anonymous background genes in domesticated apple (Malus ×domestica) in comparison to its wild relatives Malus sieversii and Malus orientalis.

View Article and Find Full Text PDF

Domesticated plants have been transported around the globe through their association with humans and have undergone changes in response to their new environments. In many regions, farmers and, later, plant breeders have developed local landraces to deal with the new conditions or to satisfy the culinary needs of consumers, showing the versatility of these plants and the ingenuity of plant breeders, both ancient and modern. However, in some cases, plants leave behind their human associations and become feral in either the crop fields or natural landscape of the new region.

View Article and Find Full Text PDF

Transcripts related to abiotic stress, oxidation, and wounding were differentially expressed in Arabidopsis shoot tips in response to cryoprotectant and liquid nitrogen treatment. Cryopreservation methods have been implemented in genebanks as a strategy to back-up plant genetic resource collections that are vegetatively propagated. Cryopreservation is frequently performed using vitrification methods, whereby shoot tips are treated with cryoprotectant solutions, such as Plant Vitrification Solution 2 (PVS2) or Plant Vitrification Solution 3 (PVS3); these solutions remove and/or replace freezable water within the meristem cells.

View Article and Find Full Text PDF

African rice (Oryza glaberrima Steud.) is a cereal crop species closely related to Asian rice (Oryza sativa L.) but was independently domesticated in West Africa ∼3,000 years ago.

View Article and Find Full Text PDF

Unlabelled: •

Premise Of The Study: Patterns of genetic diversity in domesticated plants are affected by geographic region of origin and cultivation, intentional artificial selection, and unintentional genetic bottlenecks. While bottlenecks are mainly associated with the initial domestication process, they can also affect diversity during crop improvement. Here, we investigate the impact of the improvement process on the genetic diversity of domesticated apple in comparison with other perennial and annual fruit crops.

View Article and Find Full Text PDF

The Food and Agriculture Organization (FAO) predicts that food production must rise 70% over the next 40 years to meet the demands of a growing population that is expected to reach nine billion by the year 2050. Many facets of basic plant science promoted by the Botanical Society of America are important for agriculture; however, more explicit connections are needed to bridge the gap between basic and applied plant research. This special issue, Speaking of Food: Connecting Basic and Applied Plant Science, was conceived to showcase productive overlaps of basic and applied research to address the challenges posed by feeding billions of people and to stimulate more research, fresh connections, and new paradigms.

View Article and Find Full Text PDF

Rice (Oryza sativa) is one of the most important cereal grains in the world today and serves as a staple food source for more than half of the world's population. Research into when, where, and how rice was brought into cultivation and eventually domesticated, along with its development into a staple food source, is thus essential. These questions have been a point of nearly continuous research in both archaeology and genetics, and new information has continually come to light as theory, data acquisition, and analytical techniques have advanced over time.

View Article and Find Full Text PDF

Domesticated rice (Oryza sativa) is one of the world's most important food crops, culturally, nutritionally and economically (Khush 1997). Thus, it is no surprise that there is intense curiosity about its genetic and geographical origins, its response to selection under domestication, and the genetic structure of its wild relative, Oryza rufipogon. Studies of Oryza attempting to answer these questions have accompanied each stage of the development of molecular markers, starting with allozymes and continuing to genome sequencing.

View Article and Find Full Text PDF

Premise Of The Study: Archaeological and genetic analyses of seed-propagated annual crops have greatly advanced our understanding of plant domestication and evolution. Comparatively little is known about perennial plant domestication, a relevant topic for understanding how genes and genomes evolve in long-lived species, and how perennials respond to selection pressures operating on a relatively short time scale. Here, we focus on long-lived perennial crops (mainly trees and other woody plants) grown for their fruits.

View Article and Find Full Text PDF

The compelling elegance of using genome-wide scans to detect the signature of selection is difficult to resist, but is countered by the low demonstrated efficacy of pinpointing the actual genes and traits that are the targets of selection in nonmodel species. While the difficulty of going from a suggestive signature to a functional nucleotide polymorphism should not prevent researchers from using genome scans, it does lessen their long-term utility within and across study systems. In a new study published in this issue of Molecular Ecology (Mariac et al.

View Article and Find Full Text PDF

Investigations on the nature of genetic changes underpinning plant domestication have begun to shed light on the evolutionary history of crops and can guide improvements to modern cultivars. A recent study focused on cotton fiber cells tracks the dramatic genome-wide changes in gene expression during development that have accompanied selection for increased fiber yield and quality.

View Article and Find Full Text PDF

Weedy forms of crop species infest agricultural fields worldwide and are a leading cause of crop losses, yet little is known about how these weeds evolve. Red rice (Oryza sativa), a major weed of cultivated rice fields in the US, is recognized by the dark-pigmented grain that gives it its common name. Studies using neutral molecular markers have indicated a close relationship between US red rice and domesticated rice, suggesting that the weed may have originated through reversion of domesticated rice to a feral form.

View Article and Find Full Text PDF

Cultivated rice fields worldwide are plagued with weedy rice, a conspecific weed of cultivated rice (Oryza sativa L.). The persistence of weedy rice has been attributed, in part, to its ability to shatter (disperse) seed prior to crop harvesting.

View Article and Find Full Text PDF

Background: Weedy rice (red rice), a conspecific weed of cultivated rice (Oryza sativa L.), is a significant problem throughout the world and an emerging threat in regions where it was previously absent. Despite belonging to the same species complex as domesticated rice and its wild relatives, the evolutionary origins of weedy rice remain unclear.

View Article and Find Full Text PDF

The process of crop domestication has long been a topic of active research for biologists, anthropologists and others. Genetic data have proved a powerful resource for drawing inferences on questions regarding the geographical origins of crops, the numbers of independent domestication events for a given crop species, the specific molecular changes underlying domestication traits, and the nature of artificial selection during domestication and subsequent crop improvement. We would argue that these genetic inferences are fundamentally compatible with recent archaeological data that support a view of domestication as a geographically diffuse, gradual process.

View Article and Find Full Text PDF

*Red rice, a major agricultural weed, is phenotypically diverse and possesses traits that are similar to both wild and cultivated rice. The genetic resources available for rice make it possible to examine the molecular basis and evolution of traits characterizing this weed. Here, we assess the phenol reaction - a classical trait for distinguishing among cultivated rice varieties - in red rice at the phenotypic and molecular levels.

View Article and Find Full Text PDF

Drawing a direct connection between adaptive evolution at the phenotypic level and underlying genetic factors has long been a major goal of evolutionary biologists, but the genetic characterization of adaptive traits in natural populations is notoriously difficult. The study of evolution in experimental populations offers some help - initial conditions are known and changes can be tracked for extended periods under conditions more controlled than wild populations and more realistic than laboratory or greenhouse experiments. In this issue of Molecular Ecology, researchers studying experimental wheat populations over a 12-year period have demonstrated evolution in a major adaptive trait, flowering time, and parallel changes in underlying genetic variation (Rhoné et al.

View Article and Find Full Text PDF

The evolution of different populations within a species in response to selective pressures can potentially happen in three different ways. It can occur in parallel, where similar changes occur independently in each population in response to selection; in concert, where the spread of an adaptive mutation across a species' range results in a single allele fixing in each population; or populations can diverge in response to local selective pressures. We explored these possibilities in populations of the homoploid hybrid species Helianthus deserticola relative to its parental species Helianthus annuus and Helianthus petiolaris using an analysis of variation in 96 expressed sequence tag-based microsatellites.

View Article and Find Full Text PDF

Although invasive plant species often have a hybrid ancestry, unambiguous evidence that hybridization has stimulated the evolution of invasive behaviors has been difficult to come by. Here, we briefly review how hybridization might contribute to the colonization of novel habitats, range expansions, and invasiveness and then describe work on hybrid sunflowers that forges a direct link between hybridization and ecological divergence. We first discuss the invasion of Texas by the common sunflower and show that the introgression of chromosomal segments from a locally adapted species may have facilitated range expansion.

View Article and Find Full Text PDF